सी डी एफ डी CDFD

वार्षिक प्रतिवेदन
 अप्रैल 2011 से मार्च 2012 तक ANNUAL REPORT
 April 2011 to March 2012

डी एन ए फिंगरप्रिंटिंग एवं निदान केन्द्र
नामपल्ली, हैदराबाद - 500001
Centre for DNA Fingerprinting and Diagnostics
Nampally, Hyderabad - 500001

CONTENTS

I Mandate 5
II From the Director's Desk 11
III Services

1. Laboratory of DNA Fingerprinting Services 23
2. Diagnostics Division 26
IV Research
3. Laboratory of Molecular Genetics 37
4. Laboratory of Genomics and Profiling Applications 45
5. Laboratory of Fungal Pathogenesis 50
6. Laboratory of Immunology 55
7. Laboratory of Bacterial Genetics 60
8. Laboratory of Computational Biology 72
9. Laboratory of Molecular Cell Biology 76
10. Laboratory of Structural Biology 80
11. Laboratory of Mammalian Genetics 85
12. Laboratory of Molecular Oncology 89
13. Laboratory of Cancer Biology 93
14. Laboratory of Computational and Functional Genomics 97
15. Laboratory of Transcription 101
16. Laboratory of Cell Signalling 104
17. Laboratory of Plant Microbe Interaction 108
18. Laboratory of Cell Death \& Cell Survival 112
19. Laboratory of Drosophila Neural Development 116
20. Laboratory of Cell Cycle Regulation 119
21. Other Scientific Services / Facilities
a. Laboratory Animal Facility 125
b. Bioinformatics 127
c. Instrumentation 128
V Publications 129
VI Human Resource Development 137
VII Lectures, Meetings, Workshops and Important Events 141
VIII Deputations Abroad of CDFD Personnel 147
IX Senior Staff and Officers of CDFD 151
X Committees of the Centre 155
XI Implementation of RTI Act, 2005 165
XII Budget and Finance 171
XIII Photo Gallery 279

अधिदेश
Mandate

अधिदेश

सीडीएफडी सोसाइटी के संगम ज्ञापन तथा नियम एवं विनियमों में बताए गए के अनुसार डीएनए फिंगरप्रिंटिंग एवं निदान केन्द्र की स्थापना जिन उद्देश्यों के लिए हुई वे निम्न प्रकार हैं :
i. पितृत्व विवाद, आप्रवास और अस्पतालों में नवजात शिशुओं की अदला-बदली जैसे मामलों में निजी पक्षों सहित विविध अभिकरणों के लिए पर्याप्त अदायगी पर डीएनए प्रोफाइलिंग और उससे संबंधित विश्लेषण का वैज्ञानिक अनुसंधान करना।
ii. अपराध अन्वेषण अभिकरणों को डीएनए फिंगरप्रिंटिंग और उससे संबंधित विश्लेषण तथा सुविधाएँ प्रदान करना।
iii. अपराध अन्वेषण और परिवार मामलों में डीएनए प्रोफाइल विश्लेषण और उससे संबंधित तकनीकों के साक्ष्य संबंधी मूल्य को समझने में पुलिस कर्मियों, न्यायिक वैज्ञानिकों, वकीलों तथा न्यायपालिका की सहायता करना।
iv. आनुवंशिक अव्यवस्थाओं को संसूचित करने हेतु डीएनए नैदानिक विधियाँ सिद्ध करना और इस प्रकार के संसूचन के लिए संपरीक्षाएँ विकसित करना।
v. पादप और जंतु कोशिका माल, कोशिका लाइनों के प्रामाणीकरण के लिए डीएनए फिंगरप्रिंटिंग तकनीकों का उपयोग करना और ऐसे प्रयोजनों के लिए आवश्यकतानुसार नई संपरीक्षाएँ विकसित करना।
vi. डीएनए फिंगरप्रिंटिंग तकनीकों पर प्रशिक्षण प्रदान करना।
vii. मूलभूत, अनुप्रयुक्त अनुसंधान एवं विकास कार्य करना।
viii. देश में चिकित्सा संस्थाओं, जन-स्वास्थ्य अभिकरणों और उद्योग को परामर्शी सेवाएँ प्रदान करना।
ix. केंद्र के उद्देश्यों से संगत क्षेत्रों में विदेशी अनुसंधान संस्थाओं एवं प्रयोगशालाओं और अन्य अंतर्राष्ट्रीय संगठनों के साथ सहयोग करना।
x. अनुसंधान छात्रों को स्नातकोत्तर उपाधियों के लिए पंजीकृत कर सकने के प्रयोजन हेतु उच्चतर अधिगम के मान्यता प्राप्त विश्वविद्यालयों एवं संस्थाओं के साथ संबंधन स्थापित करना।
xi. भारत सरकार, राज्य सरकारों, देश में स्थित पूर्त संस्थाओं/न्यासों, व्यक्तियों और उद्योग से नकद के रूप में या अन्य रूपों में अनुदान, दान एवं अंशदान प्राप्त करना।
xii. केंद्र सरकार के पूर्व अनुमोदन से प्रशिक्षण कार्यक्रमों, वैज्ञानिक अनुसंधान और अन्य गतिविधियों के लिए अंतर्राष्ट्रीय संगठनों सहित विदेशी स्रोतों से आर्थिक सहायता प्राप्त करना।
xiii. केंद्र की गतिविधियों को चलाने के लिए जैसा आवश्यक या सुविधाजनक हो, कोई भी संपत्ति चल या अचल या भवनों एवं निर्माणों को निर्मित करने, सुधार करने, परिवर्तित करने, गिरा देने या मरम्मत करने हेतु उपहार, क्रय, विनिमय, पट्टा, भाड़े पर लेने द्वारा या अन्यथा किसी भी तरह अर्जित करना।
xiv. केंद्र के प्रयोजन हेतु, भारत सरकार और अन्य प्रोनोटों, विनिमय पत्रों, चैक या अन्य परक्राम्य लिखतों को आहरित करना और स्वीकार करना, तैयार करना और पृष्ठांकित करना, बट्टा करना और परक्रामण करना।
xv. केंद्र को सौंपी गई निधियों या धन को निवेश करने के लिए, ऐसी प्रतिभूतियों को खोलने या ऐसे तरीके से, जो कि समय-समय पर शासी परिषद् द्वारा निर्धारित किए जाते हैं, इस प्रकार के निवेश को विक्रय या पक्षांतरण करना।
xvi. उक्त सभी उद्देश्यों या उनमें से किसी उद्देश्य की प्राप्ति के लिए सभी ऐसे अन्य विधिसम्मत कार्य, जैसा आवश्यक, प्रासंगिक या सहायक हो, करना।
xvii. केंद्र के उद्देश्यों को वास्तविक बनाने के लिए प्रोफेसरों अन्य संकाय पदों, अभ्यागत अध्येतावृत्तियों सहित अध्येतावृत्तियों, अनुसंधान एवं संवर्ग पदों, छात्रवृत्तियों आदि को संस्थापित करना।
xviii. केंद्र के वैज्ञानिक एवं प्रौद्योगिकीय कार्य के लिए प्रयोगशालाओं, कार्यशालाओं, भंडार, पुस्तकालय, कार्यालय और अन्य सुविधाओं को स्थापित करना।
xix. तकनीकी जानकारी को उद्यमकर्ताओं और उद्योगों से प्राप्त या उनको अंतरण करना; और
xx. पेटेंटों, डिज़ाइनों एवं तकनीकी जानकारी जो कि केंद्र द्वारा विकसित की गई हो, को पंजीकृत करना और केंद्र के हित में ऐसे पेटेंटो/डिज़ाइनो/तकनीकी जानकारी के किसी भाग को अंतरण करना।

MANDATE

The objectives for which the Centre for DNA Fingerprinting and Diagnostics (CDFD) was established, as enumerated in Memorandum of Association and Rules and Regulations of CDFD Society, are as follows:
i. To carry out scientific research pertaining to DNA profiling and related analysis in civil cases like paternity disputes, immigration, and exchange of newborns in hospitals, for various agencies including private parties, on appropriate payment;
ii. To provide DNA fingerprinting and related analysis and facilities to crime investigation agencies;
iii. To assist police personnel, forensic scientists, lawyers and the judiciary in understanding the evidential value of the DNA profile analysis and related techniques in crime investigation and family matters;
iv. To establish DNA diagnostic methods for detecting genetic disorders and to develop probes for such detection;
v. To use DNA fingerprinting techniques for the authentication of plant and animal cell material, cell lines and to develop new probes where necessary for such purposes;
vi. To provide training in DNA fingerprinting techniques;
vii. To undertake basic, applied and developmental R \& D work;
viii. To provide consultancy services to medical institutions, public health agencies and industry in the country;
ix. To collaborate with foreign research institutions and laboratories and other international organizations in fields relevant to the objectives of the Centre;
x. To establish affiliation with recognized universities and institutions of higher learning for the purpose of enabling research scholars to register for post-graduate degrees;
xi. To receive grants, donations and contributions in cash or in other forms from the Government of India, State Governments, Charitable Institutions/Trusts, individuals and industry within the country;
xii. To receive, with the prior approval of the Central Government, monetary assistance from foreign sources including international organizations for training programmes, scientific research and other activities;
xiii. To acquire by gift, purchase, exchange, lease, hire or otherwise howsoever, any property movable or immovable or to construct, improve, alter, demolish or repair buildings and structures as may be necessary or convenient for carrying on the activities of the Centre;
xiv. For the purpose of the Centre, to draw and accept, make and endorse, discount and negotiate Government of India and other Promissory Notes, Bills of Exchange, Cheques or other Negotiable Instruments;
xv. For investing the funds of or money entrusted to the Centre, to open such securities or in such manner as may from time to time be determined by the Governing Council and to sell or transpose such investment;
xvi. To do all such other lawful acts as may be necessary, incidental or conducive to the attainment of all or any of the above objectives;
xvii. To institute Professorships, other faculty positions, fellowships including visiting fellowships, research and cadre positions, scholarships, etc. for realizing the objectives of the Centre;
xviii. To establish, maintain and manage laboratories, workshops, stores, library, office and other facilities for scientific and technological work of the Centre;
xix. To acquire or transfer technical know-how from/to entrepreneurs and industries; and
xx. To register patents, designs \& technical know-how that may be developed by the Centre and transfer any portion of such patents/designs/technical know-how in the interest of the Centre.

निदेशक का संदेश
 From the Director's Desk

निदेशक का संदेश

अप्रैल 2011 से मार्च 2012 की अवधि के लिए इस केंद्र की वार्षिक रिपोर्ट को प्रस्तुत करते हुए और वर्ष-भर की हमारी अनुसंधान गतिविधियों का संक्षिप्त विवरण देते हुए मुझे गर्व का अनुभव हो रहा है। यह संस्थान आनुवंशिक बीमारियों के लिए डीएनए प्रोफाइलिंग और नैदानिक परीक्षण के क्षेत्रों में सेवाएँ और प्रशिक्षण प्रदान करता है और आधुनिक आणविक जीव विज्ञान के विविधि क्षेत्रों में मूलभूत अनुसंधान का नेतृत्व करता है। इस केंद्र पर उच्च-कोटि की सेवाओं और अनुसंधान का यह मिश्रण एक ऐसे अनुपम नमूने के रूप में उभरा है जो कि सामाजिक प्रासंगिकता के साथ जुड़े शैक्षिक उत्कृष्टता के लिए प्रयासरत रहता है।
अगले पन्नों में, हम आपको इस रिपोर्टाधीन वर्ष के दौरान जनता को दी गई सेवाओं और मूलभूत अनुसंधान में अपनी प्रगति की एक झलक दिखाते हैं।
रिपोर्टाधीन वर्ष के दौरान, हमने करीब-करीब एक सौ मामलों के लिए डीएनए प्रोफाइलिंग सेवाएँ प्रदान की और विविध राज्य और केंद्र सरकार की एजेंसियों को प्रशिक्षण दिया। नैदानिकी की सेवाओं के क्षेत्र में, निज़ाम आयुर्विज्ञान संस्थान (निम्स), हैदराबाद के साथ किए गए समझौता ज्ञापन के अंतर्गत स्थापित चिकित्सा आनुवंशिकी एकक में 2000 से भी अधिक रोगियों ने आनुवंशिक मूल्यांकन कराया और सलाह मशविरा लिया। इस संबंध की दूसरी महत्वपूर्ण कड़ी के रूप में निम्स में चिकित्सा आनुवंशिकी विभाग की स्थापना और उस विभाग में दो अतिरिक्त संकाय सदस्यों की भर्ती की गई थी। इस वर्ष एपीईडीए-सीडीएफडी बासमती डीएनए विश्लेषण केंद्र ने लगभग 160 बासमती चावल नमूनों का उनकी शुद्धता के लिए परीक्षण किया।
आणविक आनुवंशिकी प्रयोगशाला ने सफलता से बाकुलोविषाणु और रेशमकीटों से एमआईआरएनएज़ और उनके लक्ष्यों की पहचान की और मान्यकरण किया, इस प्रकार से जटिल परपोषी-विषाणुज अंत:क्रियाओं के बारे में रोचक परिज्ञान प्रदान किया। इस समूह ने ऐसे ट्रान्सजेनिक रेशमकीटों को उत्पन्न किया जो बाकुलोविषाणु के प्रति प्रतिरोधक हैं और इस प्रतिरोधकता गुणधर्म को एक वाणिज्यिक, उच्च उपज बाकुलोविषाणु ग्रहणशील रेशमकीट प्रभेद में अंतरित किया।
आणविक अर्बुदशास्त्र प्रयोगशाला में किए गए अध्ययनों ने बताया कि शीघ्र-आरंभ मलाशयी कैंसरों में ज्यादातर भाग नवीन गैर-डब्ल्यूएनटी गैर-एमएसआई आनुवंशिक अस्थिरता पैथवेज़ द्वारा चालित गुणसूत्री अस्थिरता दिखाते हैं। स्तनी
 की भूमिका का सूक्ष्म परीक्षण किया। एम. ट्यूबरकुलोसिस से चुनौती देने पर परपोषी कोशिका जिन पश्चजात परिवर्तनों से गुजरती है, उन की भी पहचान इस समूह ने की। ग्रीवा कैंसर बढ़ाव की प्रक्रिया को समझने के लिए, कैंसर जैविकी प्रयोगशाला सेरीन/श्रिऑनीन फॉस्फाटेस, कैल्सीनूरीन और उसके भेषजगुण संबंधी संदमकों की भूमिका पर शोध कर रही है। आणविक कोशिका जैविकी प्रयोगशाला ने प्रतिवेदित किया कि माइकोबैक्टीरियल पीपीई प्रोटीन आरवी 1168 सी, टीएलआर2-एलआरआर-एनएफ-केबी संकेतन सोपानियों को एक टैट-स्वतंत्र तरीके में मॉडुलित करके एचआईवी-1 एलटीआर से अनुलेखन को बढ़ा सकता है। यह सूचना एम. ट्यूबरकुलोसिस सह-संक्रमण के दौरान एचआईवी-1 के रोगजनन की क्रियाविधि को समझने में मदद कर सकती है।

अनुलेखन प्रयोगशाला एशेरिशिया कोलाई में कारक-आश्रित अनुलेखन समापन और प्रतिसमापन के आणविक आधार को समझने में लगी हुई़ है, और जीवे रो-आश्रित अनुलेखन समापन में गतिज-युगमन की मौजूदगी को सिद्ध किया गया। यह निरूपण किया गया कि रो एन-व्यवहित प्रतिसमापन को पराजित करने के लिए एक बहु-दीर्घ कार्यनीति अपनाता है। इस प्रयोगशाला ने षट्तयी रो पर जीवाणुभोजी प्रोटीन पीएसयू के संलगनी स्थल की पहचान की। इसी संदर्भ में, जीवाणविक आनुवंशिकी प्रयोगशाला ने दर्शाया कि जीवाणु में रो-आश्रित समापन आरएनए-डीएनए संकरों (आर-लूप्स) के जीनोम-ब्यापी निवारण के लिए आवश्यक है। इस समूह ने ग्राम-अग्राही ई. कोलाई और ग्राम-ग्राही कोरीनेबैक्टीरियम ग्लुटामिकम के बीच अनुलेखनीय प्रतीप-नियमन की उपस्थिति को भी पहली बार, दोनों जीवों के लिए क्रमशः आर्ज पीआर्ज ओ और लाइस जी-लाइस ई ऑर्थोलोगस प्रणालियों का इस्तेमाल करके दर्शाया।
कोशिका संकेतन प्रयोगशाला ने निरूपित किया कि आईपी ${ }_{7}$ आरएनए पॉलिमरेस । के घटकों को पाइरोफॉस्फोरिलीकरण करने के द्वारा यीस्ट में राइबोसोम जीवोत्पत्ति को नियमित करता है और इस प्रकार से आर आरएनए संश्लेषण को नियंत्रित करता है। यह देखते हुए कि अर्धसूत्रण प्रभावित नहीं हुआ, लेकिन अगुणित प्रशुक्राणु प्रौढ़ शुक्राणु के रूप में विकसित नहीं होते हैं, इस समूह ने आईपी6के 1 नॉकआउट मूषकों में नर वंध्यता के अंतर्निहित कोशिकीय दोषों का अभिलक्षणन करना भी आरंभ किया है।
माइ़कोबैक्टीरियम ट्यूबरकुलोसिस वर्धक पूर्वानुमान के लिए एक बेज़ियन मशीन अधिगम नमूना अभिकलनी और प्रकार्यात्मक जीनोमिकी प्रयोगशाला द्वारा तैयार किया गया। मूत्रोगजनक ई. कोलाई पर काम करते हुए, इस समूह ने दर्शाया कि होस ए प्रोटीन कशाभी हुक प्रोटीन फ्लिक सी के अपस्ट्रीम क्षेत्र से बंधता है। अभिकलनी जैविकी समूह ने मानव-एचआई़ी ब्रिज़ नेटवर्क का विश्लेषण किया और यह स्पष्ट किया गया कि कई विषाणुज प्रोटीन संधि बिन्दुओं के रूप में काम करते हैं जो कि मानव प्रोटीन-प्रोटीन अंतःक्रिया नेटवर्कों के न जुड़े घटकों को जोड़ते हैं।
कवकीय रोगजनन प्रयोगशाला ने दिखाया कि प्रोटीन काइनेस सी संकेतन का स्टॉरोस्पोरीन-व्यवहित संदमन और एक संरक्षित हीट-शॉक प्रोटीन एचएसपी 90 के गेंडानामाइसिन-व्यवहित प्रकार्यात्मक संदमन ने फ्लुकोनजोल को कवकनाशी बना दिया। पादप सूक्ष्मजीव अंतःक्रिया प्रयोगशाला के समूह ने जैन्थोमोनास ऑरिऑजी पीवी ऑरिज़ी में नए उग्रता प्रकार्यों की पहचान की जो विसरणीय संकेत कारक (डीएसएफ) द्वारा नियमित हैं। यह स्पष्ट किया गया कि उच्च डीएसएफ स्तर गतिशीलता को निरोधित कर सकते हैं और जैव फिल्म निर्माण को बढ़ावा देते हैं, जब कि उसके निम्न स्तर गतिशीलता और रासायनिक अनुचलन को बढ़ावा देते हैं और पादपों में डीएसएफ स्तरों के इस तरह के माडुलन को रोगाणु के फैलने से रोकने और बीमारी बढ़ जाने को सीमित रखने के लिए एक कार्यनीति के रूप में उपयोग किया जा सकता है।
जीनोमिकी और प्रोफाइलिंग अनुप्रयोग प्रयोगशाला मानव पहचान के लिए एकल न्यूक्लिओटाइड बहुरूपता आधारित पैनेल को तैयार करने की दिशा में काम करती आ रही है जो विकृत न्यायिक नमूनों का जीनप्रारूपण करने में उपयोगी सिद्ध होगा। हमारे नए संकाय सदस्यों ने कोशिका चक्र नियमन, कोशिका मरण और कोशिका उत्तरजीविता, और ड्रॉसोफिला तंत्रिका विकास पर उत्तेजक कार्य आरंभ किया।

केंद्र की उपलब्धियों के पैमाने के रूप में, हमारे संकाय एवं छात्रों ने इस वर्ष अनेक पुरस्कार और सम्मान प्राप्त किए। इनमें वेल्लकम ट्रस्ट डीबीटी इण्डिया अलायन्स से फेलोशिप, पश्चिम बंगाल विज्ञान एवं प्रौद्योगिकी अकादमी और आँध्र प्रदेश विज्ञान अकादमी की फेलोशिप, नवोन्मेषी युवा जैवप्रौद्योगिकी पुरस्कार और अमरीकी सूक्ष्मद्रजीवी सोसाइटी का मोसेलिओ स्कैएचटर विशिष्ट सेवा पुरस्कार शामिल थे। समकक्ष-समीक्षित अंतर्राष्ट्रीय जर्नलों में बहुसंख्या में उच्च गुणता के प्रकाशन, जैसा कि वार्षिक प्रतिवेदन में सूची दी गई है, मूलभूत अनुसंधान में केंद्र की प्रगति को प्रमाणित करते हैं। रिपोर्टाधीन अवधि के दौरान, इस केंद्र के छः शोधार्थियों ने मणिपाल विश्वविद्यालय से पीएचडी उपाधि प्राप्त की। हर साल यह केंद्र पर्याप्त प्रशिक्षित मानव संसाधन को तैयार करने और अग्रणी अनुसंधान की आवश्यकताओं की पूर्ति करने के लिए पूरे देश से बड़ी संख्या में उज्जवल, उत्साही अनुसंधान फेलो और प्रशिक्षणार्थियों को आकर्षित करता है।
प्रतिरक्षाविज्ञान, कैंसर जैविकी, फैलने वाली बीमारियाँ आदि क्षेत्रों में जैविकीय अनुसंधान को आधार देने के लिए, सीडीएफडी ने शामीरपेट (नामपल्लि के वर्तमान अंतरिम परिसर से ~ 45 किमी) में मेसर्स विमटा लैब्स में अपनी प्रयोगशाला जंतु सुविधा स्थापित की उस सुविधा को चलाने के लिए दो कर्मियों की भर्ती की। केंद्र के पास जो परिष्कृत

उपस्कर हैं, वे पूरे देश के अनुसंधानकर्ताओं के उपयोग के लिए एक विशिष्ट उपस्कर प्रचालन बहिः:्तोतन व्यवस्था के जरिए उपलब्ध हैं।

भारत सरकार के विज़ान एवं प्रौद्योगिकी मंत्रालय के विज्ञान एवं प्रौद्योगिकी विभाग की पहल से, सीडीएफडी ने अप्रैल 2011 में भारतीय सरेक्षण (एस ओ आई) के साथ एक समझौता ज्ञापन किया जिसके द्वारा केंद्र अपना नए परिसर का निर्माण एस ओ आई के 20 एकड़ जमीन में आरंभ कर रहा है। वास्तु फर्म और परियोजना प्रबंध परामर्शदाता का चयन हो गया है और शीघ्र ही निर्माण गतिविधियाँ आरंभ होने की आशा है।

मैं अपने सभी वैज़ानिक, तकनीकी और प्रशासनिक सहकर्मियों और विद्याथियों के प्रति बहुत आनंद के साथ आभार प्रकट करता हूँ, जिन्होंने इस केंद्र की उन्नति और प्रतिष्ठा को विकसित करने में जोश भरे योगदान दिए और अथक प्रयास किए। हम जैवप्रौद्योगिकी विभाग, सीडीएफडी सोसाइटी के विशिष्ट सदस्य, शासी परिषद्, अनुसंधान क्षेत्र-पैनेल-वैज़ानिक सलाहकार समिति, प्रबंध समिति, वित्त एवं भवन समितियों को भी उनके प्रोत्साहन, सलाह और संपूर्ण समर्थन के लिए हार्दिक धन्यवाद देते हैं। उनकी गहरी रुचि, उत्कृष्ट सहयोग के बिना, हमारी अधिकांश उपलब्धियाँ संभव नहीं हो पाती। हम, साथ मिलकर, इस संस्थान को आने वाले वर्षों में और अधिक ऊँचाइयों तक ले जाने के लिए प्रयत्नशील रहेंगे।

ज गौरीशंकर
मार्च 31, 2012

Director's Message

It is my privilege to present the Annual Report of this Centre for the period April 2011 to March 2012 and submit a concise narration of our year-long research activities. This Institute provides services and training in the areas of DNA profiling and diagnostic testing for genetic diseases, and also spearheads basic research in diverse areas of modern molecular biology. This combination of high-calibre services and research at the Centre has emerged as a unique model that strives for academic excellence knitted with social relevance.

In the following pages, we offer you a glimpse of our progress in basic research and of the services we have rendered to the public during the reporting year.
During the period under report we provided DNA profiling services for almost a hundred cases and rendered training to various State and Central government agencies. In the area of Diagnostic services, more than 2000 patients underwent genetic evaluation and counselling at the Medical Genetics Unit that has been established as part of the Memorandum of Understanding with the Nizam's Institute of Medical Sciences (NIMS), Hyderabad. Another milestone in this association was establishment of the Department of Medical Genetics (DMG) at NIMS, and appointment of two additional faculty members in the Department. This year, the APEDA-CDFD Centre for Basmati DNA Analysis tested around 160 basmati rice samples for their purity.

The Laboratory of Molecular Genetics has successfully identified and validated miRNAs and their targets from baculovirus and silkworm genomes, thereby providing interesting insight into the complex hostviral interactions. This group has generated transgenic silkworms which are resistant to the baculovirus and have transferred this resistance property to a commercial, high yielding baculovirus susceptible silkworm strain.

The studies at Molecular Oncology Laboratory have revealed that a significant proportion of early-onset rectal cancers exhibit chromosomal instability driven by novel non-Wnt non-MSI genetic instability pathways. The research on Mammalian Genetics has dissected out the role of DNA methyltransferases Dnmt3l and Dnmt2 in carcinogenesis and development. This group has also identified epigenetic changes that the host cell undergoes when challenged with M. tuberculosis. In order to understand the process of cervical cancer progression, the Laboratory of Cancer Biology is exploring the role of serine/threonine phosphatase, calcineurin and its pharmacological inhibitors. The Laboratory of Molecular Cell Biology has reported that the mycobacterial PPE protein Rv1168c can augment transcription from HIV-1 LTR by modulating the TLR2-LRR-NF-кB signalling cascades in a tat-independent manner. This information may help in understanding the mechanism of pathogenesis of HIV-1 during M. tuberculosis co-infection.
The Laboratory of Transcription is engaged in understanding the molecular basis of factor-dependent transcription-termination and antitermination in Escherichia coli, and has shown the existence of kineticcoupling in the in-vivo Rho-dependent transcription termination. It has been demonstrated that Rho
employs a multi-prolonged strategy to overcome N-mediated antitermination. This laboratory has identified the docking site of a bacteriophage protein Psu on the hexameric Rho. In a related context, the Laboratory of Bacterial Genetics has shown that Rho-dependent termination in bacteria is essential for the genomewide prevention of RNA-DNA hybrids (R-loops). This group has also shown for the first time the occurrence of transcriptional cross-regulation between Gram-negative E.coli and Gram-positive Corynebacterium glutamicum, by using the ArgP-argO and LysG-lysE orthologous systems from the two organisms, respectively.
The Cell Signalling group has demonstrated that IP_{7} regulates ribosome biogenesis in yeast by pyrophosphorylating components of RNA polymerase I, and thereby controlling rRNA synthesis. This group has also started characterization of cellular defects underlying male infertility in IP6K1 knockout mice, noting that meiosis is unaffected, but haploid spermatids do not develop into mature spermatozoa.

A Bayesian machine learning model for Mycobacterium tuberculosis promoter prediction has been created by the Computational and Functional Genomics Laboratory. Working with uropathogenic E. coli, this group has shown that the HosA protein binds to the upstream region of flagellar hook protein fliC. The Computational Biology group has analysed the human-HIV bridge network, and it has been revealed that several viral proteins act as articulation points that connect the unconnected components of human protein-protein interaction networks.
The Laboratory of Fungal Pathogenesis has demonstrated that staurosporine-mediated inhibition of protein kinase C signalling and gendanamycin-mediated functional inhibition of a conserved heat-shock protein Hsp90, rendered fluconazole fungicidal. The group in the Laboratory of Plant Microbe Interactions has identified new virulence functions which are regulated by the Diffusible Signal Factor (DSF) in Xanthomonas oryaze pv oryzae. It has been revealed that high DSF levels can suppress motility and promote biofilm formation, while its low levels promote motility and chemotaxis and that such modulation of DSF levels in plants can be used as a strategy to prevent spread of pathogen and restrict disease development.

The Laboratory of Genomics and Profiling Applications has been working towards devising a single nucleotide polymorphism based panel for human identification which would be useful in genotyping the degraded forensic samples. Our relatively new faculty members have initiated exciting work on cell cycle regulation, cell death and cell survival, and Drosophila neural development.
As a measure of the Centre's achievements, our faculty and students were recipients of several awards and honours this year. These have included Fellowship from Wellcome Trust DBT India Alliance, Fellowships of the West Bengal Academy of Science \& Technology and of the Andhra Pradesh Akademi of Sciences, Innovative Young Biotechnologist Awards, and Moselio Schaechter Distinguished Service Award of the American Society of Microbiology. A significant number of high quality publications in peerreviewed international journals, as listed in the Annual Report, testify to the Centre's progress in basic research. During the reporting period, six research scholars of the Centre were awarded PhD by the University of Manipal. Every year, the Centre attracts a large number of bright, enthusiastic research fellows and trainees from all over the country to generate adequate trained human resource and to fulfil the requirements of cutting edge research.
In order to support biological research in the areas like immunology, cancer biology, infectious diseases etc., CDFD has established its Laboratory Animal Facility at M/s Vimta Labs Limited in Shamirpet (~ 45 kms from the current, interim campus at Nampally) and has recruited two personnel to operate the facility. The sophisticated equipments in the Centre's possession are also available for use by researchers all over the country through a unique equipment operation outsourcing arrangement.

At the initiative of the Department of Science and Technology, Ministry of Science and Technology, Government of India, CDFD has entered into an MoU with the Survey of India (Sol) in April 2011 through which the Centre is initiating the construction of its new campus in 20 acres of Sol's land at Uppal, Hyderabad. The selection of architect firm and project management consultant has been completed and it is expected that the construction activities would commence shortly.

It is my pleasure to acknowledge all my scientific, technical and administrative colleagues and students for their passionate contributions and tireless efforts in nurturing the growth and reputation of the Centre. We also extend our sincere thanks to the Department of Biotechnology, distinguished members of the CDFD Society, Governing Council, Research Area Panels-Scientific Advisory Committee, Management Committee, Finance and Building Committees for their encouragement, advice and unstinted support. Without their keen interest and outstanding cooperation, much of our accomplishments would not have been possible. We, together, shall strive to carry this Institute to ever higher accomplishments in the coming years.

J Gowrishankar
March 31, 2012

सेवाएँ
 Services

LABORATORY OF DNA FINGERPRINTING SERVICES

Scientist-In-Charge
Other Members

Co-ordinator

Madhusudan R Nandineni
SPR Prasad
Ch V Goud
DS Negi
Ch Annapurna
Devinder Kumar
Sanjukta Mukerjee
Chandra Shekhar Singh
Vijay Girnar Amrutarao
J Nagaraju

Staff Scientist
Senior Technical Officer
Technical Officer II
Technical Officer II
Technical Officer I (Till Dec. 2011)
Technical Officer II (Since Oct. 2011)
Technical Officer II (Since Nov. 2011)
Technical Assistant (Since Oct. 2011)
Technical Assistant
Staff Scientist

Objectives

1. To provide DNA fingerprinting services in cases forwarded by law-enforcing agencies and judiciary of State and Federal Governments, relating to murder, rape, paternity, maternity, child swapping, body identification, kidney transplantation, etc.;
2. To develop human resources skilled in DNA fingerprinting, to cater to the needs of State and Federal Government agencies;
3. To impart periodical training to manpower involved in DNA fingerprinting sponsored by State and Federal Government agencies;
4. To provide advisory services to State and Federal Government agencies in establishing DNA fingerprinting facility;
5. To create DNA marker databases of different caste populations of India.
Summary of services provided until the beginning of the reporting year (April 1, 2010 - March 31, 2011)

A total number of 112 cases were received for DNA fingerprinting examination during the above mentioned period. Out of these, 40 cases were related to paternity / maternity, 57 cases were related to identification of deceased, 8 cases were pertaining to sexual assault (rape), 4 cases were related to murder and 3 cases pertaining to biological relationship (kidney transplantation). Fourteen States and Union Territories of India availed DNA fingerprinting services of CDFD during this period. Rajasthan forwarded the highest number of cases (37) followed by Uttar Pradesh (18), Andhra Pradesh (16), Karnataka (10), Punjab (10), Chhattisgarh (9), Maharashtra (4), Madhya

Pradesh (2), Andaman \& Nicobar Islands (1), Bihar (1), Daman \& Diu (1), Puducherry (1), Tamil Nadu (1) and Uttarakhand (1).

Details of services provided in the current reporting year (April 1, 2011 - March 31, 2012)

Break-up of the cases during this reporting period is given below under following heads:

Biological Relationship	3
Identity of Deceased	33
Paternity/Maternity	50
Sexual Assault (Rape)	5
Murder	3
Total number of cases	$\underline{94}$

(a) Deposition of evidence in Courts of Law

During this reporting year, the DNA experts defended their reports in five cases in various Hon'ble Courts throughout the Country.
(b) Training/Lectures/Workshops on DNA fingerprinting examination
(i) Training

1. Training in DNA fingerprinting techniques to the scientific personnel from the State Forensic Science Laboratory, Lucknow, Uttar Pradesh from 20.6.2011 to 25.6.2011.
2. Training in DNA fingerprinting techniques to Post-graduate fellows from the Department of Forensic Medicine, Andhra Medical College, Visakhapatnam, Andhra Pradesh in November 2011.
3. Training in DNA fingerprinting techniques to personnel from Forensic Science Laboratory, Govt. of NCT of Delhi from 14.3.2012 to 30.4.2012.

(ii) Lectures/Workshops

1. Delivered lecture for the benefit of the Judicial Officials from Andhra Pradesh Judicial Academy, Secunderabad in April 2011.
2. Delivered lecture for the benefit of the Judicial Officials from Andhra Pradesh Judicial Academy, Secunderabad in June 2011.
3. Delivered lecture for the benefit of the Police Probationers from North East Police Academy, Delhi in July 2011.
4. Delivered lecture for the benefit of the students from Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu in August 2011.
5. Coordinated in conducting the "Promega DNA Typing Workshop Forum" conducted by Promega Corp. Pvt. Ltd. at CDFD from 11 to 13 November 2011 for the benefit of scientific personnel from various Forensic Science Laboratories across the Country.
6. Delivered lecture for the benefit of the Air Force Officers from Air Force Intelligence School, Lohegaon, Pune on 7.2.2012.
7. Lecture was delivered for the benefit of the students at the Department of Genetics, Osmania University College for Women, Hyderabad on 15.2.2012.
8. Delivered lecture for the benefit of the students at St. Pious X PG College for Women, Hyderabad on 27.3.2012.
(c) National Visits
9. Delivered a lecture for the benefit of the students at P B Siddhartha College of Arts \& Science, Vijayawada, Andhra Pradesh on 21.1.2012.
10. Provided hands on training and delivered talk on DNA fingerprinting techniques at the State Forensic Science Laboratory, Sagar, Madhya Pradesh during 22 to 26 November 2011.
A total number of 94 cases were received for DNA fingerprinting examination during the current reporting period. Of these, 50 cases related to paternity / maternity, 33 cases relate to identification of deceased, 5 cases were pertaining to sexual assault (rape), 3 cases were related to murder and 3 cases pertaining to biological

Summary of the state-wise break-up of DNA fingerprinting cases

State/Union Territory	Biological Relationship	Identity of Deceased	Maternity/ Paternity	Murder	Sexual Assault (Rape)	No. of Cases
Andaman \& Nicobar Islands		1	1			2
Andhra Pradesh	3	16	12		2	33
Bihar			3			3
Chhattisgarh		3	7		2	12
Delhi		1	1	1		3
Jammu \& Kashmir		2				2
Jharkhand		1				1
Karnataka		1	9			10
Kerala			6			6
Madhya Pradesh			1			1
Maharashtra			3			3
Orissa			1			1
Puducherry			1			1
Punjab		5	4		1	10
Tamil Nadu				1		1
Uttar Pradesh		3		1		4
Uttarkhand			1			1
Total number of cases	3	33	50	3	5	94

relationship (kidney transplantation). Seventeen States and Union Territories of India have availed DNA fingerprinting services of CDFD during this period. Andhra Pradesh forwarded the highest number of cases (33) followed by Chhattisgarh (12), Karnataka (10), Punjab (10), Kerala (6), Maharashtra (3), Uttar Pradesh (4), Bihar (3), Delhi

Publications

1. Gunnarsdóttir ED, Nandineni MR, Li M, Myles S, Gil D, Pakendorf B and Stoneking M (2011). Larger mtDNA than Y-chromosome differences between matrilocal and patrilocal groups from Sumatra. Nature Communications 2: 228.

(3), Jammu \& Kashmir (2), Jharkhand (1), Madhya Pradesh (1), Orissa (1), Puducherry (1), Tamil Nadu (1) and Uttarakhand (1) (Figure 1).

During this reporting period, an amount of ₹ 15,91,074/- (Rupees fifteen lakhs ninety one thousand and seventy four only) has been received towards DNA fingerprinting analysis charges, which is inclusive of service charges, as levied by Govt. of India.

The cases involving paternity (53\%) and identification of the deceased (35\%), constituted the bulk of the cases received (Figure 2).
2. Reich D, Patterson N, Kircher M, Delfin F, Nandineni MR, Pugach I, Ko AMS, Ko YC, Jinam TA, Phipps ME, Saitou N, Wollstein A, Kayser M, Paabo S and Stoneking M (2011). Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. American Journal of Human Genetics 89:516-528.
3. Ranganath P, Sharma V, Danda S, Nandineni MR and Dalal A. Report of novel mutations in the lysosomal sialidase (NEU1) gene in Indian cases of sialidosis. Indian Journal of Medical Research (In press).

DIAGNOSTICS DIVISION

Principal Investigator
Adjunct Faculty
PhD Students

Other Members

Ashwin Dalal
Prajnya Ranganath
Anusha Uttarilli
AnjanaKar
P Rajitha
GR Savithri
Angalena R
Pooja KP
Usha Rani Dutta
Jamal Md Nurul Jain
Sri Lakshmi Bhavani G
Sai Shruthi C
Vijay Kumar Pidugu
Seetalakshmi S
C Krishna Prasad
R Sudheer Kumar

Objectives

1. To conduct genetic evaluation for patients / families with genetic disorders;
2. To develop new methods and assays for genetic analysis and engage in research on chromosomal and single gene disorders;
3. To act as national referral center for analysis
and quality control of genetic tests for few genetic diseases;
4. To impart training in genetic evaluation of patients with genetic disorders.
I. Details of the services provided in the current reporting year (April 1, 2011 March 31, 2012)
5.

Clinical Genetics

A total of 2149 patients were presented for genetic evaluation and counseling, during the year 201112. These consisted of patients with chromosomal disorders, monogenic disorders, mental retardation, congenital malformations, inborn errors of metabolism, and familial disorders.

The Medical Genetics Unit, established at Nizam's Institute of Medical Sciences, Hyderabad is running successfully and a Department of Medical Genetics has been formally created with appointment of two Assistant Professors. A total of 809 patients were examined and counseled in the unit during 2011-12.

Staff Scientist

NIMS, Hyderabad
Senior Research Fellow Junior Research Fellow (Since Feb. 2012)

Technical Officer III
Technical Officer II
Technical Officer II
Technical Officer II (Till Jan. 2012)
Technical Officer I
Technical Officer I
Research Assistant
Research Assistant
Project Assistant
Project Assistant (Since Jan. 2012)
Technician II
Technician II
enetic investigations done during 2011-12

Investigation	Total cases	Positives
Cytogenetics	979	$111(11.3 \%)$
Proband	867	$107(12.3 \%)$
Prenatal	112	$4(3.6 \%)$
Molecular Genetics	770	$326(42.3 \%)$
Proband	714	$317(44.4 \%)$
Prenatal	56	$9(16 \%)$
Biochemical Genetics	857	$197(23 \%)$
Proband	847	$191(22.5 \%)$
Prenatal	10	$6(60 \%)$

Cytogenetics

Disease	Abnormality	No. of cases
Down Syndrome	Trisomy 21	38
	$46, \mathrm{XY}$, rob $(21 ; 21)+21$	3
	$46, \mathrm{SC}$, rob $(21 ; 21)+21$	1
	$46, \mathrm{XX}, \mathrm{t}(13 ; 21)+21$	2
	$46, \mathrm{XX}, \mathrm{t}(15 ; 21)+21$	1
Turner Syndrome	Monosomy $\mathrm{X}(45, \mathrm{X})$	12
	iso $\mathrm{X},(46, \mathrm{X}, \mathrm{i}(\mathrm{X}))$	3
	Mosaic 45,X/46,X,i(X)	3
	Mosaic 45,X/46,X,i(X)/46XX	1
	Mosaic 46,Xr(X)/46XX	1
Klinefelter Syndrome	Mosaic 45,X/46XY	2
	$47, \mathrm{XXY}$	3
	$48, \mathrm{XXXY}$	1
	$48, \mathrm{XXYY}$	1
Sex Reversal	$49, \mathrm{XXXXY}$	1
	Phenotypic female with 46,XY	2

Fluorescence in situ Hybridization (FISH)

Disease/translocation	No. of cases	No. of positives
Prader-Willi Syndrome	6	1
Di-George Syndrome	6	1
Williams-Beuren	3	2
$46, \mathrm{X}, \mathrm{t}(\mathrm{Y} ; 15)$	1	1
$46, \mathrm{XX}, \operatorname{inv}(1)$	1	1
Mosaic Turner Syndrome	2	1
$45, \mathrm{XX}$, dic(14;19)(p11.2;p13.3)/46,XX	1	1

Quantitative Fluorescent PCR (QF-PCR)

QF-PCR kit	No. of cases	No. of positives
Prenatal QF-PCR	23	0
MLPA kit(P064) MR-1	12	1 (PWS)

Structural chromosomal abnormalities

Inversions	
46,XY,inv(9)	1
46,SC,inv(9)	1
46,XY,inv(Y)	2
46,XX, inv(12)(p12q14)	1
Duplications	
46,XY,der(15)(p12)	1
Deletions	
46, XY, del(5)(p)	1
46,XX, del(9)(p22)	1
Translocations	
46,XX,t(13;14)/46, XX	1
46,X,t(X;4)(q27;p16)	1
45,XX, dic(14;19)(p11.2;p13.3)/46,XX	1
46,XY,t(3;15)(q34;q13)	1
46,XX,t(8;20)(p12;q13.3)	1
46,XX,t(2;16)(p23;q24)	1
46,XX,t(2;16)(p23;q24)mat	1
46,XY,t(11;20)(q14.3;q13.3)	1
46,XX,t(4;7)(p12;p12)	1
46,XX,t(3;5;7;13)(q26;q3;p15;q34)	1
$\begin{aligned} & \text { 46,XX,der(7;13)t(3;5;7;13) } \\ & \text { (q26;q33;p15;p34) } \end{aligned}$	1
46,XX,t(4;13)(q28;q34)	1
46,XY,t(1;18)	1
46,SC,t(3;7)(q26.2;q36)	1
47,XX+marker/46, XX	1
46,XY,r(18)/45,XY-18	1
Polymorphic variants	
46,XX,9qh+	1
46,XY,14p+	1
46,XY,14p+	1
46,XY,15p+	4
46,XX,15p+	5
Total	36

Biochemical Genetics

Disease/Test	Positives
Urine Metabolic Screening tests (335)	66
Amino acid disorders ($\mathrm{N}=160$)	20
Maple syrup urine disease	3
Non Ketotic Hyperglycinemia	3
Hyperornithinemia	3
Tyrosinemia	4
Citrullinemia	1
Argininemia	1
Phenylketonuria	5
Lysosomal storage disorders ($\mathrm{n}=362$)	105
Hurler syndrome (17)	2
Hunter syndrome (23)	11
Sanfilippo B (7)	0
Morquio A disease (17)	11
Arylsulphatase B (10)	5
Sly disease (19)	0
GM1-Gangliosidosis (58)	9
Galactosialidosis (1)	1
Gaucher disease (39)	12
Krabbe disease (22)	5
Pompe disease (3)	1
Neuraminidase (1)	0
Nieman Pick disease (39)	14
Mucolipidosis (5)	5
Metachromatic Leukody strophy (49)	11
Fabry's disease (4)	3
Mannosidase (2)	0
Hexosaminidase A/B (46)	
Tay Sachs disease	7
Sandhoff disease	2
Prenatal diagnosis (10)	6
Tay Sach disease (1)	1
Sandhoff 's disease (1)	1
Metachromatic Leukody strophy (4)	2
Gaucher's disease (1)	1
Hunter (1)	0
Pompe's (1)	1
Sly disease (1)	0

Molecular Genetics

Disorders	Cases	Positive	Negative		
DMD/BMD	195	135	60		
DMD Carrier Analysis	21	03	18		
Spinal Muscular Atrophy	95	57	38		
SMA Carrier Analysis	27	18	09		
		Normal	Homozygous	Heterozygous	Compound Heterozygous
β-thalassemia/Sickle cell	116	24	32	44	16
Factor V Leiden	45	43	01	01	-
Factor II mutation	22	22	-	-	-
Cystic Fibrosis	52	44	03	05	-
Triplet Repeat Disorders		Positive	Negative		
Friedreichs Ataxia	47	14	33		
Myotonic Dystrophy	16	08	08		
Huntington Disease	25	16	09		
SCA Panel (1,2,3,6 \& 7)	53	14	39		
Prenatal Diagnosis					
DMD	6	-	6		
Spinal Muscular Atrophy	15	02	13		
		Normal	Homozygous		
β-thalassemia	05	06			

(II) Diagnostics Research

Project I: Cloning, characterization and analysis of chromosomal rearrangements in human genetic disorders
Summary of work done until the beginning of this reporting year (Upto March 31, 2011)
Structural rearrangements alter the genome architecture and may result in human disease phenotypes. The patients with translocations and inversions often have breakpoints located within the disease gene, or very close to it. In order to identify the disease gene, breakpoints can be characterized and if any gene is disrupted by rearrangement then it is considered as a candidate gene. Cloning their breakpoint can provide the quickest route to identifying the disease gene. This project deals with the molecular characterization of chromosomal breakpoints associated with specific clinical phenotypes. We have identified two cases of novel balanced translocations associated with disease and presently are working with the first case i.e., a girl with delayed milestones and seizures with a karyotype of $46, \mathrm{XX}, \mathrm{t}(\mathrm{X} ; 20)(\mathrm{q} 13 ; \mathrm{p} 13)$
(Figure 1A).
In order to confirm the breakpoint regions, FISH (Fluorescence-in situ-hybridization) experiments were performed. Further characterization was achieved by FISH with BACs (Bacterial Artificial Chromosome) which were selected by in silico analysis using the human genome databases. BAC clones were first labelled by nick translation and the probes thus made were used for further FISH experiments.
(a) Delineation of the breakpoint region on Xq13 region
Initially 8 BAC clones were selected from Xq13 region, out of which 6 showed signals on normal X and derived 20 whereas 2 showed signals on normal X and derived X. Hence the breakpoint region was narrowed down to 4 Mb between the two clones RP11-804E20 and RP11-770E18.
(b) Delineation of the breakpoint region on 20p13 region
Similarly among the 2 clones on the 20p13 region; RP11-706G18 showed signals on normal 20 and
on derived 20 whereas RP11-666H23 showed signals on normal 20 and derived X , thus anchoring the breakpoint region between these two clones to a distance of 2.3 Mb . A contig of 14 clones on Xq and 6 clones on 20p region were identified covering the breakpoint spanning region.
Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
Molecular characterization of $t(X ; 20)$ breakpoints

1. Delineation of the breakpoint region using BACs

Seventy BAC clones were selected tentatively depending on the position of the chromosomal breakpoints. 44 BAC clones from the Xq region and 26 clones from the 20p region were selected. FISH was performed with all the clones.On Xq region (Figure 1C), FISH with BAC clone RP11804E20 showed signals on normal X and derived X
wheras RP11-772H19 showed signals on normal X and derived 20, thus narrowing down the breakpoint region to 237 kb . A contig of 2 clones were identified covering this region for the identification of split signals. On the 20p region FISH was performed with 26 BAC clones (Figure 1D). FISH with BAC clone RP11-720M07 showing signals on normal 20 and derived 20 and RP11627A23 showing signals on normal 20 and derived X narrowed down the breakpoint region to 203kb region. A contig of 3 BAC clones covering this region were identified and the work is underway.

2. HUMARA assay

To check the skewing of X chrosome we have done methylation specific PCR for the human androgenreceptor gene (HUMARA) located on Xq11-12 region. The results showed that there is Skewed X-inactivation in our patient (Figure 1B) which is expected whenever the X chromosome is involved in a translocation with any other autosome.

Fig 1A

Fig 1C

Fig 1B

Fig 1D

Figure 1A. Ideogram of the chromosomes involved in the translocation $t(X ; 20)(q 13 ; p 13)$. A. From left to right are shown wild type chromosomes X (pink), derived X (pink/ green), wild type 20 (Green) and derived 20(green/pink).B. GTG banded partial karyotype showing the translocation breakpoint regions.
Figure 1B. Molecular analysis (HUMARA assay) showing electrophoretogram A. The double digest and mock digest of the control sample. B. The double digest and the mock digest of the patient. The double digest showing the loss one allele indicating the presence of skewed X - inactivation in the patient.
Figure 1C, D. A detailed physical map of the translocation breakpoint region on Xq and 20p13 region. The red dotted line shows the breakpoint region.
3. Array comparative genomic hybridization analysis

Human CytoSNP-12 Bead chip (Illumina, San Diego, CA) spanning the entire genome-wide tag SNPs and additional markers targeting all regions of known cytogenetic importance was used for this assay. The array CGH studies confirmed that this translocation is not associated with any gains or losses at the breakpoints and elsewhere in the genome.
Project II: Clinical, biochemical and molecular analysis of common lysosomal storage disorders
Summary of work done until the beginning of this reporting year (Upto March 31, 2011)
Lysosomal storage disorders are a heterogeneous group of disorders associated with specific lysosomal enzyme deficiency. The diagnosis in most of these disorders is based on enzyme assay. There is a large amount of overlap in enzyme levels among carriers and normal people; hence it is very difficult to detect carriers by enzyme assay. Mutation detection is helpful for carrier detection and accurate prenatal diagnosis. Our study aims to characterize the clinical features, biochemical
parameters and molecular defects in common lysosomal storage disorders.
We focused mainly on 3 lysosomal storage disorders in the last reporting year viz. NiemannPick Disease, Metachromatic Leukodystrophy and Sialidosis.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
We are continuing the work in Metachromatic Leukodystrophy and Niemann-pick disease. During current reporting year, we designed primers and standardized the PCR conditions for more disorders viz., Aspartylglucosaminuria, Galactosialidosis, Hunter Syndrome and Maroteaux-Lamy syndrome.
For mutation analysis, primers were designed using PRIMER 3 Software and PCR was carried out with primers encompassing the entire exons and the flanking intronic regions of the corresponding gene in all the patients. Bidirectional sequencing was carried out on all the purified PCR products by capillary electrophoresis on ABI 3130 automated genetic analyzer (Applied Biosystems, Foster City, CA).

Type of LSD	Total Mutations	Novel	Known
Niemann-Pick Disease	11	7	4
Metachromatic Leukodystrophy	6	1	5
Sialidosis	3	3	0

Niemann-Pick Disease

Acid sphingomyelinase activity was measured in the patient leucocytes using the substrate $2-\mathrm{N}$ -(hexadecanoyl)-amino-4-nitrophenyl-phosphorylcholine. A total of eleven mutations were observed in ten patients (Table 1) and four novel mutations in nine carriers. Out of these, three patients were compound heterozygotes. The enzyme levels were severely decreased in all the patients with the observed mutations.

Metachromatic Leukodystrophy

The Arylsulfatase A enzyme activity in patients was measured in the leucocytes using the substrate p-Nitrocatechol. A total of eight mutations were observed in eight patients (Table 2) and three mutations in the four carriers. Of these, L251fs is an insertion c. $752-753$ ins T and $459+1 \mathrm{G}>\mathrm{A}$ is a splice site mutation. The enzyme levels were severely decreased in all the patients with the observed mutations.

Type of LSD	Total Mutations	Novel	Known
Niemann-Pick Disease	15	14	1
Metachromatic Leukodystrophy	11	6	5
Hunter Syndrome	2	0	2
Maroteaux-Lamy Syndrome	14	12	2

S. No.	Exon	Mutation
1	Exon 1/ Exon 6	c.193deIT/I520L
2	Exon 2/ Exon 2	G319R/G319R
3	Exon 2/ Exon 6	C.564_565insC/S510F
4	Exon 3/ Exon 6	M384V/R542X
5	Exon 6/ Exon 6	c.1815deIC/c.1815deIC
6	Exon 6/ Exon 6	Y519C/Y519C
7	Exon 6/ Exon 6	R542X/ R542X
8	Exon 6/ Exon 6	R542X/ R542X
9	Exon 6/ Exon 6	R542X/ R542X
10	Exon 4/Exon 4	N549K/N549K

Table 1. Mutations in patients of NPD

Patient	No. of the Exon	Mutation
1	Exon 2	Q139K
2	Intron 2	459+1G>A
3	Exon 3	P180Q
4	Exon 4	G245R
5	Exon 4	L251fs
6	Exon 4	T274M
7	Exon 5	R299W
8	Exon 5	R311X

Table 2. Mutations in patients of MLD
Hunter Syndrome (Mucopolysaccharidosis type II - MPS II)
The Iduronate-2-sulphatase (IDS) enzyme activity is determined in patients by using the substrate 4Methyl umbelliferone derivative. The enzyme levels were severely decreased in all the patients with the observed mutations. Mutations identified are shown in Table 3.

No. of the Patient	No. of the Exon	Mutation
Patient 1	Exon 3	G140R
Patient 2	Exon 3	G140R
Patient 3	Exon 3	A85T

Table 3. Mutations in MPS II disorder
Maroteaux-Lamy Syndrome (Mucopolysaccharidosis type VI - MPS I)
N -Acetyl galactosamine-4-sulphatase (ARSB) activity was measured in the patient leucocytes using the substrate 4-nitrocatechol sulphate. A total of 14 mutations were observed in twenty one

No. of the Patient	No. of the Exon	Mutation
Patient 1\&2	Exon 1	L98R
Patient 3 \& 4	Exon 1	D53N
Patient 5	Exon 2	c.del 496 T
Patient 6	Exon 8	W450C
Patient 7	Exon 8	W450L
Patient 8	Exon 4	A237D
Patient 9	Exon 6	c.del1208 C
Patient 10	Exon 7/Exon 8	P445L/W450C
Patient 11	Exon 6	H393R
Patient 12	Exon 2	R160Q
Patient 13\&14	Exon 8	c. 1577 del C
Patient 15	Exon 6	E390K
Patient 16	Exon 1	$\begin{aligned} & \hline \text { c. } 208^{\wedge} 215 \mathrm{del} \\ & \text { CCGCACCT } \end{aligned}$
$\begin{gathered} \text { Patient } 17,18, \\ 19 \& 20 \end{gathered}$	Exon 5	L321P
Patient 21	Exon 5	V376E

Table 4. Mutations in patients of MPS VI disorder (98R
patients, out of which the mutations L98R, D53N, L321P and c. 1577 del C were recurrent in more than one patient (Figure 2) (Table 4). The enzyme levels were severely decreased in all the patients with correspondence to the observed mutations.

Publications

1. Dutta UR, Rajitha P, Kumar PV and Dalal A (2011). Cytogenetic abnormalities in 1162 couples with recurrent miscarriages in southern region of India: Report and review. Journal of Assisted Reproduction and Genetics 28: 145-149.
2. Ponnala R and Dalal A (2011). Partial monosomy 7q. Indian Pediatrics 48: 399-401.
3. Dutta UR, Pidugu VK, Goud V and Dalal AB (2012). Mosaic Down syndrome with a marker: Molecular cytogenetic characterization of the marker chromosome. Gene 495:199-204.
4. Kumar R, Panigrahi I, Dalal A and Agarwal S (2012). Sickle cell anemia - Molecular diagnosis and prenatal counseling: SGPGI experience. Indian Journal of Pediatrics 79: 68-74.
5. Angalena R, Aggarwal S, Phadke SR and Dalal A. Compound heterozygote condition in beta thalassemia major due to a novel single nucleotide deletion (-T) at codon 69 in association with IVS 1-5 (G>C) mutation. International Journal of Laboratory Hematology (In press).
6. Bashyam MD, Chaudhary AK, Reddy EC, Reddy V, Acharya V, Nagarajaram HA, Devi ARR, Bashyam L, Dalal AB, Gupta N, Kabra M, Agarwal M, Phadke SR, Tainwala R, Kumar R and Hariharan SV (2012). A founder ectodysplasin A receptor (EDAR) mutation results in a high frequency of the autosomal recessive form of hypohidrotic ectodermal dysplasia in India. British Journal of Dermatology (In press).
7. Padma Priya T and Dalal AB. Tuberous sclerosis: Diagnosis and prenatal diagnosis by MLPA. Indian Journal of Pediatrics (In press).
8. Patil SJ, Ponnala R, Shah S and Dalal A. Mosaic Trisomy 9 presenting with congenital heart disease, facial dysmorphism and pigmentary skin lesions: Intricate issues of genetic counseling. Indian Journal of Pediatrics (In press).
9. Ponnala R, Ranganath P, Dutta UR, Pidugu VK and Dalal AB. Phenotypic and molecular characterization of partial trisomy 2q resulting from insertion-duplication in chromosome 18q: A case report and review of literature. Cytogenetic and Genome Research (In press).
10. Ranganath P, Sharma V, Danda S, Nandineni MR and Dalal A. Report of novel mutations in the lysosomal sialidase (NEU1) gene in Indian cases of sialidosis. Indian Journal of Medical Research (In press).
11. Verma PK, Dalal A, Mittal B and Phadke SR. Utility of MLPA in mutation analysis and carrier detection for Duchenne muscular dystrophy. Indian Journal of Human Genetics (In press).
12. Verma PK, Ranganath P, Dalal A and Phadke SR. Spectrum of lysosomal storage disorders at medical genetics center in North India. Indian Pediatrics (In press).

Other Publications

1. Dalal A (2011). Annual review of genomics and human genetics, 2010. (Book Review) Current Science 100: 933-934.
2. Dalal A (2011). Genetic tests. API Textbook of Medicine, $9^{\text {th }}$ Edition, Pg. 21-25. Editor-inChief: Munjal YP. Jaypee Brothers Medical Publications.
3. Ranganath P and Dalal A (2012). Annual review of genomics and human genetics, 2011. (Book Review) Current Science 102: 923-924.

शोध
Research

LABORATORY OF MOLECULAR GENETICS Centre of Excellence (CoE) for Genetics and Genomics of Silkmoths

Principal Investigators	J Nagaraju
	KP Arun Kumar
PhD Students	Asha Minz
	Chandrapal Singh
	S Suresh Kumar
	Deepa Badrinarayan
	G Gopinath
	TR Sitalakshmi
	Vandana
	K Akanksha
	Parveen Kumar
Other Members	Varsha Srivastava
	VV Satyavathi
	A Sobhan Babu
	M Muthulakshmi
	S Annapurna
	Archana Tomar
	R Lakshmi Vaishna
	MJ Reddy
	Jyoti Singh
	K Adarsh Gupta
	Deepa Narra
	Saikat Chakraborty

Staff Scientist
Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow (Since Jan. 2012)
Junior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Jul. 2011)
Staff Scientist
Technical Officer IV (CoE)
Technical Officer II
Technical Officer II
Technical Officer I (CoE)
Bioinformatician (CoE)
Technical Assistant (CoE)
Technical Assistant (CoE)
Research Associate
Project Assistant
Project Assistant (Till Jul. 2011)
Project Junior Research Fellow (Since Aug. 2011)

Objectives

1. Target validation of microRNAs involved in hostpathogen interaction of silkmoths;
2. Identification and functional characterization of novel genes involved in immune response pathways of silkmoths;
3. Functional characterization of silk genes and sex-determination genes in Bombyx mori;
4. Introduction of anti-baculoviral property from transgenic silkworms to commercial silkworm strains followed by field trials;
5. Translation of the genetic and genomic knowledge on Indian wild silkmoths.

The progress made in the projects related to transgenic silkworms, microRNAs and immune response is reported here.

Summary of the work done in the projects mentioned above until the beginning of this reporting year (upto March 31, 2011)

* We have successfully developed transgenic silkworms of Nistari, a non-diapausing polyvoltine strain resistant to BmNPV virus. The BmNPV resistance has been successfully introgressed to a commercial, bivoltine BmNPV susceptible silkworm strain CSR2 through recurrent backcross strategy.
* Using B. mori, we have discovered many hostencoded miRNAs that have targets in the baculovirus essential transcripts, and many baculoviral-encoded microRNAs that have targets in the host genes involved in immune function.
* During the last five years, several immune related genes have been characterized in silkmoths.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

Project 1: Evaluation of the role of baculovirus-

 encoded microRNAs in baculoviral infection in silkwormIn our previous study, we discovered 4 BmNPVencoded miRNAs. In silico prediction of the host targets had shown Ran (Ras-related nuclear protein) as one of the potential targets of bmnpv-miR-1 (Singh et al. 2010, Virology 407:120-128). Ran-GTP acts as a cofactor for Exportin-5, which governs the nuclear export of pre-miRNAs from the nucleus to the cytoplasm. Exportin-5 binds to premiRNA in the presence of Ran-GTP, whereas, hydrolysis of Ran-GTP to Ran-GDP is essential for the release of pre-miRNA in the cytoplasm. We carried out functional analysis of bmnpv-miR-1 to show that it acts as a suppressor of Ran in both cell culture and in vivo in B. mori (Figure 1). We
found that bmnpv-miR-1 significantly represses the expression of Ran both at transcript and protein levels, resulting in the impairment of Ran-GTPmediated small RNA transport in the host (Figure 2). Consistent with this result, blocking of bmnpv-miR-1 by specific LNA resulted in higher Ran transcript level and decrease in virus titre in BmNPV infected larvae. Further, we assessed the virus load by blocking one of the host miRNAs, bmo-miR-8 which has target in the essential gene of the baculovirus (ie1), which was suppressed by bmnpv-miR-1 and Ran dsRNA, by specific LNA. The virus load was dramatically increased upon inhibition of this host miRNA. Our results provide convincing evidence that BmNPV suppresses the small RNAmediated host defense to successfully proliferate in the host cells by employing bmnpv-miR-1. The present study thus provides an insight into yet another layer of complex host-viral interactions mediated by a virus-encoded miRNA.

Figure 1. bmnpv-miR-1 down-regulates Ran expression in B. mori larvae and in BmN cells. (A) RT-qPCR analysis of Ran transcript in the fat body tissues of bmnpv-miR-1 and with or without its specific LNA administered B. mori larvae. DEPC-H2O administered larvae were used as a negative control. (B) Western blots showing decrease in the protein level of Ran in bmnpv-miR-1 administered larvae as compared to the control larvae (DEPC-H2O administration). α-tubulin was used as a loading control. Western blot band intensity was evaluated by densitometry and normalized with α-tubulin. (C) Ran transcript analysis by RT-qPCR in BmN cells upon bmnpv-miR-1 transfection. For transfection siGFP was used as a negative control. For RT-qPCR analysis, three independent experiments were carried out in three replicates each with the set of 3 larvae and the results were normalized with constitutively expressing 18 S ribosomal RNA gene of B. mori. Data are presented as Mean \pm SD $(N=3)$.

Figure 2. Functional analysis of Ran by RNAi in B. mori larvae. (A) dsRNA- mediated knockdown of Ran in larvae analyzed by RT-qPCR. dsGFP injected larvae were used as a negative control for all the knockdown experiments. Three independent experiments were carried out in three replicates each with the set of 3 larvae and the results were normalized with constitutively expressing 18 S ribosomal RNA gene of B. mori. Data are presented as Mean \pm SD $(\mathrm{N}=3)$. (B) Western blot showing marked decrease in Ran protein level upon dsRNA injection in larvae. α-Tubulin was used as a loading control. (C) Down-regulation of host miRNAs upon Ran knockdown determined by Northern blot analysis. (D) Lysine tRNA expression analyzed by Northern blot. 5S rRNA was used as a loading control. Band intensity was evaluated by densitometry and normalized with 5S rRNA.

Project 2: Characterization of immune response genes in silkmoths

Among immune genes, we studied the regulation of a Rel gene dorsal. The Rel family proteins are important regulatory proteins that function as DNAbinding transcription factors resulting in turning on (activation) and off (repression) of genes upon infection. Dorsal (DI), a morphogen, activates as well as represses target genes during embryonic dorso-ventral patterning in Drosophila. DI, like other proteins of the Rel family, binds to a 'loosely' conserved DNA sequence (GGGRRYYCCC) known as κB-motif. It is not known how DI decides which genes to activate and which to repress. Using genomic, biophysical and biochemical approaches, we demonstrated that the underlying principle of this functional specificity lies in the 'sequenceencoded structure' of the кB DNA. We investigated 'nucleotide signatures' in DI-binding motifs with respect to their activator / repressor functions. Figure 3 shows sequence bias in the composition of the activator and repressor kB-motifs. We found that the ability of DI to activate or repress target
genes depends on the geometry of кB-DNA which in turn depends on its sequence. Dorsal-binding motifs exist in distinct activator and repressor conformations. Molecular dynamics of DNA-Dorsal complexes revealed that repressor κB-motifs typically have A-tract and flexible conformation facilitating interaction with co-repressors (Figure 4). Deformable structure of repressor motifs, is due to changes in the hydrogen bonding in $A: T$ pair in the ' A -tract' core. The sixth nucleotide in the $\mathrm{\kappa B}$-motif, ' A ' (A6) in the repressor motifs and ' T ' (T6) in the activator motifs, is critical to confer this functional specificity as A6 \rightarrow T6 mutation transformed flexible repressor conformation into a rigid activator conformation. Hence, we reasoned that 'A-tract $\kappa \mathrm{KB}$ ' motifs have deformable structure to facilitate context-based interaction of the same DI with different co-repressors in a gene-specific manner as revealed by differences in their DNA geometry. Our findings indicate that the structure of the $\kappa \mathrm{B}$ DNA backbone is an important factor that determines not only the ability of DI to bind the кB-motif but also its ability to interact with cofactors.

Figure 3. Sequence bias in the composition of the activator and repressor kB-motifs. (A) The second halfsite of the $\kappa \mathrm{B}$-sequence dyad is more conserved than the first half-site. Hinge nucleotide (underlined) of the dyad is usually A or T. (B) Only the bases at the termini (shown in bold) form protein contacts while the core bases (underlined) usually do not form hydrogen bonds with proteins. (C and D) Repressor motifs have 'A-tract' which is lacking in the activator motifs as revealed by Weblogo consensus. The sixth base in the repressor κB-motifs is always ' A '. For the repressor motif consensus prediction, the кB-motifs present in DI repressor target genes dpp and zen were taken into consideration, however only one motif in each gene is functional. Thus all functional repressor motifs have A-tract and the sixth base is always ' A '. (E) First half-site consensus is same for both activator and repressor motifs but not the second half site. First base of the second half-site (bold) is A in the repressor motifs and T in the activator motifs.

Figure 4. Putative model of transcriptional activation (turning on) and repression (turning off) of genes by DI. Dorsal-binding motifs exist in distinct activator and repressor conformations. (A) Different activator кB-motifs retard similar size DI-complexes suggesting that gene activation by DI is probably independent of co-regulators. (B) Gene repression by DI is context-based and co-repressor dependent as different repressor motifs retard DI-complexes of varying sizes indicating presence of proteins of different sizes. (C and D) The activator and repressor motifs have different major groove conformations. As a result, DI interaction with the two motifs is different. The 'A-tract $\kappa \mathrm{B}$ ' motifs have a deformable structure to facilitate context-based interaction of the same DI with different co-repressors in a gene-specific manner as revealed by differences in their DNA geometry.

Project 3: Limited multilocational field trials of transgenic silkworms

Baculoviral resistance from transgenic silkworms of Nistari (Polyvoltine) strain was successfully introgressed to a commercial, baculovirus susceptible CSR2 (Bivoltine) strain using a recurrent backcross strategy coupled with selection for transgenic markers and microsatellite alleles specific to recurrent parent. The schematic diagram showing introgression of transgenes essential for baculoviral resistance from transgenic Nistari lines to high yielding CSR2 line is given in Figure 5. The resultant backcross lines were screened for survival
rate and silk cocoon quality after feeding baculovirus inclusion bodies per os (40,000 OBs/larvae @ 1 ml for 100 larvae). The transgenic silkworm lines and the introgressed transgenic lines (BC4F13) are being maintained in the silkworm germplasm and monitored for the transgene stability and unique traits of the strains at APSSRDI, Hindupur. The performance of these lines with regard to survival rate and other silk cocoon characteristics are shown in Figure 6. An application to IBSC/RCGM was submitted for the approval to carryout limited multilocational field trials of transgenic lines for testing the efficacy of transgenes at field level.

BC4 F13
Figure 5. Schematic diagram showing "introgression" of transgene (dsRNA for multiple essential baculoviral genes) from transgenic Nistari lines to high yielding CSR2 line.

Figure 6. Performance of BC4-F13 batch of backcross population and control CSR2 line under normal rearing and BmNPV inoculated conditions.

APEDA-CDFD CENTRE FOR BASMATI DNA ANALYSIS

Principal Investigator JNagaraju
and Consultant
Other Members
Sabahat Noor
Manju Shukla

Staff Scientist
Technical Officer II
Project Assistant

Objectives

1. Testing of purity of Basmati samples received from Export Inspection Council (EIC), Ministry of Commerce, Govt. of India, Basmati rice exporters from India and other countries;
2. Fine mapping and characterization of the candidate genes of grain appearance traits of Basmati rice.

Basmati samples analyzed at APEDA-CDFD Centre in the current reporting year (April 1, 2011 - March 31, 2012)
During the period under report, a total of 160 Basmati samples were analyzed and the number of samples indicating the percentage of adulteration with non-basmati rice is shown in figure below.

Objective

To fine map and characterize the candidate genes of grain appearance traits of Basmati rice in a promising Quantitative Trait Locus (QTL) on Chromosome 5.

Summary of the work done until the beginning of this reporting year (Upto March 31, 2011)
A total of 47 QTLs for 16 different agronomic and quality traits were mapped in an F_{2} mapping population of 181 plants, derived from a cross between a traditional Basmati variety Basmati 370 and a semi dwarf variety Jaya. These QTLs were distributed on all chromosomes except 7 and 12. Grain length, grain breadth, length/breadth ratio and chalkiness are important attributes determining the grain appearance quality of Basmati rice. In the present study, two QTL clusters for grain appearance

Basmati Rice Genetics and Genomics

Project 1: Fine mapping and association study of candidate genes in a promising region on chromosome 5 controlling grain appearance traits of Basmati rice
traits of Basmati have been identified on two different chromosomes namely Chr 3 and Chr 5. The QTL cluster identified on Chr 5 comprises qGL5.1, qGB5.1, qGB5.2, qLB5.1, qER5.1, $q E R 5.2$, and $q C H K 5.1$ in the marker interval of RM289 and RM18600, while another cluster for
grain breadth and length/breadth ratio was identified on Chr 3 at the marker interval RM16 and RM5864.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

One of the ultimate goals of genetic mapping of complex traits is to isolate candidate genes at QTL regions. In the present study, one QTL region at marker interval of RM430 and RM18600 on chromosome 5 spanning a physical distance of 327.1 kb was chosen for identification of candidate genes as it controls grain breadth, grain length, length/breadth ratio and elongation ratio. Based on the rice genome sequence information, 50 genes are present at this region. Of the 50 genes, two predicted genes, AP2 transcription factor and RING E3 ligase have been reported to be involved in controlling the seed size and weight. Hence, these two genes have been chosen for further studies. Within these two predicted candidate genes, AP2 domain transcription factor was sequenced with both gDNA and cDNA of Basmati 370 and aligned to indica and japonica reference sequences to assess any DNA variation. The sequence results, including the promoter region, revealed 7 Single Nucleotide Polymorphism (SNPs) when compared to indica, but was exactly similar to the japonica sequence. Therefore, none of the SNPs can be considered as functional nucleotide polymorphism (FNP) for the predicted gene. The second predicted gene, RING E3 ligase protein was sequenced with Basmati 370 cDNA and three FNPs were observed when compared to indica sequence. However, there is wrong annotation of current gene in japonica which was referred from different sites viz. Gramene, NCBI, Phytozyme and OryGenesDB and confirmed with rice group of MSU, Gramene (Michigan State University). Mapping population of 155 Recombinant Inbred Lines (RILs) at F_{6} stage is in progress for confirmation and fine mapping of the grain size QTL already identified in the F_{2} population developed by crossing Basmati 370 and Jaya. Our future work plan includes the following:

1. Further narrowing down of targeted QTL region through:
a. Association mapping;
b. Development of advanced back cross population and/ NILs;
c. Prediction of candidate genes and their structural and functional analysis.
2. Other approaches include use of resequencing data to align genomic sequence of QTL region
with the available rice reference genome sequence to check for the variations at genomic level.

Publications

1. Arunkumar KP and Nagaraju J (2011). Drosophila intersex orthologue in the silkworm, Bombyx mori and related species. Genetica 139: 141-147.
2. Bentur JS, Sinha DK, Padmavathy C, Revathy C, Muthulakshmi M and Nagaraju J (2011). Isolation and characterization of microsatellite loci in the asian rice gall midge (Orseolia oryzae) (Diptera: Cecidomyiidae). International Journal of Molecular Science 12:755-772.
3. Mrinal N, Tomar A and Nagaraju J (2011). Role of sequence encoded кB DNA geometry in gene regulation by Dorsal. Nucleic Acids Research 39: 9574-9591.
4. Shukla JN, Jadhav S and Nagaraju J (2011). Novel female-specific splice form of $d s x$ in the silkworm, Bombyx mori. Genetica 139:23-31.
5. Terenius O, ...(67 authors)..., Nagaraju J, Richard H, Herrero S, Gordon K, Swevers L and Smagghe G (2011). RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology 57: 231-245.
6. Pidugu VK, Pothula RKS, Narra D and Srivastava V (2012). Development of a multiplex Polymerase Chain Reaction method for specific detection of genetically modified cotton events MON 531 and MON 15985. International Journal of Basic and Applied Sciences 1:45-53.
7. Siddiq EA, Vemireddy LR and Nagaraju J (2012). Basmati rices: Genetics, breeding and trade. Agricultural Research 1:25-36.
8. Singh CP, Singh J and Nagaraju J. A baculovirus-encoded miRNA suppresses its host miRNAs biogenesis by regulating the Exportin-5 co-factor Ran. Journal of Virology (In press).
Patent
9. Nagaraju J. Virus resistant transgenic silkworm.
PCT International Application No. PCT/IN2012/ 000083 filed on 2.02.2012.

LABORATORY OF GENOMICS AND PROFILING APPLICATIONS

Principal Investigator	Madhusudan R Nandineni
PhD Students	Anujit Sarkar
	Soumya Rao
Other Members	Vishakha Sharma
	S Seethalakshmi
	G. Sreeja Reddy
	Srujana Nagireddy

Staff Scientist
Senior Research Fellow
Junior Research Fellow (Since Jul. 2011)
Project Assistant (Till Jan. 2012)
Project Assistant (Till Dec. 2011)
Project Assistant
Project Assistant

Objectives

1. Development, standardization and validation of DNA markers for genetic fidelity testing of tissue culture raised plants and for phylogenetic studies;
2. Development of novel strategies/methodologies for enrichment of human DNA from mixtures containing human and non-human DNAs for DNA profiling-based human identification;
3. To study the human genetic diversity among various population groups of India.
Project 1: Development and validation of DNAbased markers for genetic fidelity testing of tissue culture raised plants and for phylogenetic studies
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
As a referral centre for the genetic fidelity testing of tissue culture-raised plants, it was proposed to employ various molecular markers such as microsatellites or simple sequence repeats (SSRs), Inter-SSRs (ISSR), Inter-Retrotransposon Amplified Polymorphism (IRAP) or Retrotransposon Microsatellite Amplified Polymorphism (REMAP) for testing clonal fidelity in banana, black pepper, potato, sugarcane and vanilla. In potato and banana, after various levels of screening, several IRAP and REMAP primer combinations were shortlisted to distinguish among different varieties as well as for clonal fidelity testing. Based on SSR marker studies, the genetic relatedness among the various varieties of potato and banana were ascertained employing polyacrylamide gel electrophoresis (PAGE) analysis. Further, multiplex PCR assays based on SSR markers were designed for banana, potato and sugarcane for true-to-type testing of tissue culture raised plants.
Details of progress made in the current reporting year (April 1, 2011- March 31, 2012)
(a) Varietal studies using the retrotransposonbased marker systems
As mentioned in our previous report, studies were carried out employing IRAP, REMAP and SSR
markers for development of suitable markers for genetic fidelity testing of tissue culture raised plants and also for phylogenetic studies. In banana, a total of five IRAP and ten REMAP primer combinations were chosen for diversity studies among different banana varieties. In IRAP studies, a total of 56 reproducible bands were obtained, of which 49 were found to be polymorphic with an average of 11 bands per primer. In REMAP studies, a total of 214 reproducible bands were generated, of which 186 were found to be polymorphic, with an average of 21 bands per primer. In sugarcane, nine each of IRAP and REMAP primer combinations were selected for clonal fidelity testing. In potato, total of eighteen IRAP and nine REMAP combinations were chosen to assess the genetic diversity among different varieties. A total of 307 reproducible IRAP bands were produced, out of which 270 were found to be polymorphic (data not shown), whereas in REMAP analysis, a total of 143 reproducible bands were produced, of which 98 were found to be polymorphic.
In vanilla, total of nine IRAP and fifteen REMAP combinations were selected for diversity studies among different vanilla species. A total of 95 IRAP and 135 REMAP reproducible bands were obtained, of which 73 and 111 bands were found to be polymorphic in IRAP and REMAP respectively. Phylogenetic analyses of the retrotransposonbased markers has enabled us in discriminating the various Indian vanilla species. In black pepper, ten IRAP and three REMAP combinations were selected for diversity studies. A total of 51 and 25 reproducible bands were obtained, of which 23 and 15 bands were found to be polymorphic in IRAP and REMAP, respectively.
(b) Phylogenetic studies and genetic fidelity testing employing SSR markers
Various SSR loci reported in the literature for potato and banana crops were tested for their usefulness in genetic fidelity testing and phylogenetic studies. As mentioned in the previous year's report, thirty three of the forty SSR loci tested in case of potato and thirty two of the forty two SSR loci in case of
banana were shortlisted for further analysis based on polymorphism observed in PAGE analysis. Further analysis using capillary-electrophoresis based genotyping employing fluorescently-labeled primers was performed. Data analysis was carried out using standard SSR analysis softwares. In banana, the phylogenetic analysis of 20 Musa cultivars employing sixteen SSR primer pairs had discriminated most of the genotypes. The dendrogram obtained showed the presence of three main clusters (A, B and C) having 12, 7 and 1 cultivars, respectively (data not shown). In potato, three main groups were observed in the dendrogram obtained with SSR marker system. Group I, II and III included 22, 20 and 5 varieties, respectively (data not shown). Further work with additional SSR markers would reveal the genetic relatedness at a finer scale among these varieties which would be helpful in devising strategies for crop improvement programmes in banana and potato.
(c) Multiplexing of SSR loci for assessing the clonal fidelity
Based on the banding pattern and informativeness of SSR loci, various SSRs were shortlisted for multiplex assays in different crop plants. The tissue-culture raised micropropagules from these crop plants were used to standardize the SSR multiplex PCR conditions for true-to-type testing.
In banana, ten multiplex (six triplex and four tetraplex) SSR sets were designed employing different combinations of twenty SSR primer pairs and the PCR conditions were also optimized for true-to-type testing. In potato, twenty-eight of the thirty three SSR markers screened were chosen for developing ten multiplex (seven triplex and three tetraplex) SSR sets and were employed in fidelity testing among somaclones of potato. In sugarcane, ten primer pairs were selected for development of eleven triplex sets for true-to-type testing. In vanilla, six primer pairs were chosen to devise four triplex sets for true-to-type testing. In black pepper, ten primer pairs were selected for four triplex and one tetraplex set for genetic fidelity testing. The multiplex reactions had generated identical banding pattern when visualized in 3\% agarose gel electrophoresis for all the clones tested among the various crop plants, as one would expect if they were true-to-type. Representative results of clonal fidelity testing in banana and vanilla are shown in Figure 1A and 1B, respectively.
Project 2: Developing novel strategies for enrichment of human DNA from mixtures containing human and non human DNAs for DNA profiling based human identification.
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
The major problems associated with DNA profiling of forensic case work samples for human
identification (HID) are contamination with nonhuman DNAs and PCR inhibitors. To address these issues, selective enrichment of human STRs had been proposed. Reconstituted samples wherein human and bacterial DNAs were mixed in various ratios up to $1: 10,000$ by weight yielded successful profiles when enriched with the modified primer extension capture (PEC) methodology prior to amplification of STR loci, whereas no DNA profiles could be generated for the samples without enrichment at high bacterial DNA contamination. Since the modified PEC method had yielded promising results, attempts were made to improve the technique by employing two biotinylated oligos complimentary to the sequences located upstream and downstream of each of the 18 forensicallyrelevant STR loci for enrichment. Last year, we had reported that the peak heights (relative fluorescence units, RFUs, obtained from the capillary electrophoresis), which represent the amount of enriched product, had increased by up to 35% when compared to the enrichment using only one oligo (either forward or reverse) at every locus. All the subsequent experiments for enrichment of STR loci were carried out using a pair of biotinylated oligos designed to capture both the strands of DNA at each of the 18 STR loci.
Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
The main objective of this study was to optimize and compare different enrichment methodologies that would work the best with the forensic case work samples. Towards this goal, we had evaluated three techniques which included PEC, where the biotinylated oligos were allowed to hybridize with target DNA followed by single step polymerization (extension) of the oligo. The second method was short hybridization which was similar to that of PEC except that the hybridized oligos were not extended. In the third method (long hybridization), the biotinylated oligos (bait) were first allowed to bind with streptavidin-coated magnetic beads and incubated with target DNA (hybridization at $60^{\circ} \mathrm{C}$ for 48 hrs), followed by washing of unbound contaminants/ non-target DNAs, and elution of the bound fragments, which are expected to contain relevant STRs.

The efficacy of these three methods was evaluated by analyzing the enrichment of STR loci in the simulated samples (reconstituted by mixing human genomic DNA with bacterial DNA or with PCR inhibitors). All the three methods were proficient in generating the profiles up to 1:10,000 ratio of human and bacterial DNA concentrations by weight. However, the long hybridization method was not very consistent. Comparison of the enrichment efficiency of these three methods for few representative STR loci is shown in Figure 2.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Figure 1A. 3\% Agarose gel showing the triplex reaction with clones of Grand Naine variety of banana and one of the out group as control. Lane 1- Mother plant (Grand Naine); Lane 2-21: Clones of Grand Naine; Lane 22- Ankur II outgroup. Figure 1B. 3\% Agarose gel showing the triplex reaction with clones of Vanilla planifolia and one out-group as control, Lane 1-10: Clones of V. planifolia, Lane 11- V. andamanica, Lane M1-100 bp ladder, Lane M2-50 bp ladder. Figure 2. Comparision of three methods of enrichment of STR loci in reconstituted samples (1:10,000 ratio of human and bacterial DNA by weight). X-axis: representative STR loci; Y-axis: Relative Flourescence Units (RFU). Figure 3. DNA profile of a sample inhibited by hematin at a concentration of 1.5 mM . Panel 1: without enrichment; Panel 2: Enrichment using PEC method; Panel 3: Enrichment using short hybridization method. Figure 4. DNA profile of a sample inhibited by humic acid at a concentration of $0.5 \mu \mathrm{~g} / \mu \mathrm{l}$. Panel 1: without enrichment; Panel 2: Enrichment using PEC method; Panel 3: Enrichment using short hybridization method. Figure 5. DNA profile of a sample inhibited by tannic acid at a concentration of $2 \mu \mathrm{~g} / \mu \mathrm{l}$. Panel 1: without enrichment; Panel 2: Enrichment using PEC method; Panel 3: Enrichment using short hybridization method. [For Figures 3,4 and 5; X-axis: size of amplified STR loci in base pairs; Y-axis: RFU]

STR-enrichment in the presence of inhibitors of PCR

The commonly employed commercial STR multiplex PCR kits for HID work are tolerant to limited concentrations of inhibitors like humic acid, hematin, phenolic compounds (tannic acid), calcium, etc., which are commonly found in various forensic samples. We tested the above strategy for its effectiveness in enrichment of STR loci in the presence of various concentrations of these potent PCR inhibitors. In preliminary experiments, in the presence of PCR inhibitors, PEC and short hybridization technique (with 1 hour incubation) proved to be more efficient in amplifying simulated forensic samples as compared to long hybridization process (48 hours of incubation). The highest concentrations of inhibitors at which these methods were successful in generating complete DNA profile when 5 ng of human genomic DNA was taken as input were: hematin at 1.5 mM ; humic acid at 0.5 $\mu \mathrm{g} / \mu \mathrm{l}$ and tannic acid at $2 \mu \mathrm{~g} / \mu \mathrm{l}$. The DNA profiles obtained after enrichment of STR loci using PEC and short hybridization methods in presence of various inhibitors are shown in Figures 3, 4 and 5. Eventhough complete DNA profile were obtained there was some background noise with some of the samples. In future experiments, these methods would be standardized further and employed on various kinds of challenging forensic case work samples to test their efficiency to increase the DNA profiling success rate.
Project 3: To study human genetic diversity in various population groups in India
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
Another area of interest of the laboratory is to assess the genetic diversity among different population groups in India and to address questions related to the phenotypic effects of genetic variation(s) within and between population groups. As part of the genotype-phenotype correlation study, it was proposed to validate the putative genetic variants such as single nucleotide polymorphisms (SNPs) that play an important role in determining the common phenotypic traits such as skin pigmentation in different population groups in India. In the previous reports, we had described the strategy and procedure of sample collection from different geographical locations in India. Further, we had reported about the optimization of the Genplex panel (a 48-plex SNP-based genotyping system for HID) and its testing in the
pre-established paternity trios cases, wherein it showed consistent results with those obtained by employing commercial STR multiplex PCR kits.

Details of progress made in the current reporting year (April 1, 2011- March 31, 2012)
(a) Collection of additional samples from volunteers along with phenotypic trait data for genetic variation studies
As mentioned in the previous report, in order to build an efficient SNP-based panel for HID, the allele frequencies of the SNPs should meet the desired characteristics, viz., high heterozygosity and low F_{st} (Wright's F -statistics). In order to determine the distribution of SNPs across various Indian population groups, additional samples from different geographical locations in India were collected. The phenotypes and ancestry related information were collected as per the procedure mentioned in the previous report, except that the collection of hair samples from volunteers was discontinued.
(b) SNP-based study of genetic loci affecting human skin pigmentation in Indian populations
As part of 'forensic phenotyping', common phenotypic traits like skin pigmentation, bodymass index, hair-thickness, etc. were chosen for these studies. The aim was to determine the SNPs that are associated with these phenotypes in Indian populations, so that a prediction can be made about the phenotype of a target individual based on the genotype obtained from the DNA recovered from or at the crime scene, which may help in short-listing a person or a group from a large population. In the present study, genotypephenotype correlation studies for skin pigmentation were carried out for 40 samples (20 each from Andhra Pradesh and West Bengal) for three SNPs in three genes, which were reported to be associated with skin pigmentation in South-Asian populations in previous studies. The three SNPs rs2762464, rs1426654 and rs1800404 located in genes tyrosinase-related protein-1 (TYRP1), solute carrier protein (SLC24A5) and oculocutaneous albinism protein (OCA2), respectively, were studied by employing the SNaPshot ${ }^{\text {TM }}$ genotyping assay (Applied Biosystems, Foster City, USA). The genotypes obtained from these samples, were found to satisfy the Hardy-Weinberg Equilibrium test. Association test of SNPs with skin pigmentation in these two population groups showed that rs2762464 and rs1800404 were not significantly associated with skin pigmentation while the allele G for rs1426654 (A/G) showed significant
association with higher melanin index. Future work employing additional loci implicated in determining skin pigmentation will be undertaken in different Indian populations.
(c) Evaluation of the SNP-based GenPlex (48plex) panel in some Indian populations
As mentioned previously, the forensically relevant SNPs reported elsewhere were tested in Indian populations for their applicability in HID purposes. The GenPlex panel was employed according to the manufacturer's instructions for genotyping the samples in populations from different states which included Jharkhand, Andhra Pradesh, Tamil Nadu, Rajasthan and West Bengal. In the initial phase, around 20 random samples from each population were genotyped with GenPlex panel to obtain the allele frequencies of the concerned loci in these populations. Only about 15-20 SNPs fulfilled the desired criteria of high heterozygosity and low F_{st}, while the others did not satisfy the said criteria. Considering the high genetic diversity of India, such a difference is not unexpected and hence, it was decided to incorporate additional SNPs, which would meet the criteria for HID purposes, to the proposed HID SNP panel by screening various SNP databases.
(d) Screening of SNP databases to filter additional SNPs for HID purposes
In order to screen SNPs from various databases in the public domain, following filters were employed:
(a) Minor allele frequency (MAF) of the SNPs should be equal or greater than 0.4, (b) Wright's

F-statistics $\left(F_{\text {st }}\right)$ should be equal to or less than 0.02 , (c) the SNPs should have no known reported functional role, (d) there should be no conservation of flanking regions of SNPs across species, and (e) the SNPs should not be located in low complexity regions of the genome (high AT/GC rich sequences or repetitive regions). After screening for the above mentioned criteria, a panel of about 500 SNPs was shortlisted from various SNP databases. In future work, further screening on the basis of genomic location and linkage probabilities would be carried out prior to testing and validating them by performing genotyping experiments in the Indian populations for HID purposes.

Publications

1. Gunnarsdóttir ED, Nandineni MR, Li M, Myles S, Gil D, Pakendorf B and Stoneking M (2011). Larger mtDNA than Y-chromosome differences between matrilocal and patrilocal groups from Sumatra. Nature Communications 2: 228.
2. Reich D, Patterson N, Kircher M, Delfin F, Nandineni MR, Pugach I, Ko AMS, Ko YC, Jinam TA, Phipps ME, Saitou N, Wollstein A, Kayser M, Paabo S and Stoneking M (2011). Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. American Journal of Human Genetics 89:516-528.
3. Ranganath P, Sharma V, Danda S, Nandineni MR and Dalal A. Report of novel mutations in the lysosomal sialidase (NEU1) gene in Indian cases of sialidosis. Indian Journal of Medical Research (In press).

LABORATORY OF FUNGAL PATHOGENESIS Understanding the Pathobiology of an Opportunistic Human Fungal Pathogen Candida glabrata

Principal Investigator Rupinder Kaur
\(\begin{array}{ll}PhD Students \& Gaurav
\& Maruti Nandan Rai\end{array}\)
Sapan Borah Vivek Kumar Srivastava
Mubashshir Rasheed
Other Members Sriram Balusu
Shivarathri Raju
Rosalin Sahoo
Suneetha KJ

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Jan. 2012)
Project Assistant
Project Assistant
Project Assistant (Till Feb. 2012)
Technical Officer (Since Dec. 2011)

Candida species are the leading cause of invasive mycoses with Candida albicans being the most prevalent species. C. glabrata, a regular commensal of human oral cavity and gastrointestinal tract, causes infections ranging from superficial mucosal to disseminated life-threatening infections under conditions of immuno-compromise and is the second or third most frequently isolated Candida species from Intensive Care Unit patients depending upon the geographical location. Treatment of C. glabrata infections is limited by its low inherent susceptibility towards a widely used antifungal drug fluconazole. Research in our laboratory is focused on the elucidation of the molecular basis of intrinsic resistance of C. glabrata towards antifungal fluconazole, better understanding of the interaction of C. glabrata with the host immune cells, and the iron uptake and homeostasis mechanisms operational in C. glabrata.

Project 1: Functional genomic analysis of C. glabrata-macrophage interaction

Objectives

1. Analysis of intra-cellular behavior;
2. Screening of a C. glabrata mutant library for altered survival profiles;
3. Identification and analysis of the genes required for survival in vitro.

Summary of the work done until the beginning of this reporting year (upto March 31, 2011)
Using an in vitro system comprised of the human monocytic cell line THP1, we showed that wild-
type C. glabrata cells were able to replicate while a mutant lacking aspartyl proteases was killed upon co-incubation with THP-1 macrophages for 24 h . Screening of a C. glabrata mutant library (18,432 mutants; generated by homologous recombination of in vitro generated Tn7 insertions in C. glabrata genomic clones) for altered survival profiles in THP1 macrophages via signature-tagged mutagenesis (STM) approach identified a total of 168 mutants, 35 'up' and 133 'down' mutants which displayed increased and reduced survival in human macrophages, respectively. Tn7insertion mapping in the down mutants identified a set 56 genes, belonging to diverse biological processes including chromatin organization and golgi vesicle transport, which are required for survival and/or replication of C. glabrata in macrophages. We also reported that C. glabrata wild-type cells (wt) respond to the intracellular milieu of macrophages by modifying their chromatin architecture, and chromatin extracted from macrophage-internalized C. glabrata cells displayed resistance to micrococcal nuclease (MNase) digestion.
Details of the progress made in the current reporting year (April 1, 2011 - March 31, 2012)
To further investigate the role for chromatin remodeling in survival in THP-1 macrophages, we created knock-outs for five genes (CgRSC3-A, CgRSC3-B, CgRTT107, CgRTT109, and CgSGS1 genes) belonging to the GO category of either chromatin organization or DNA damage, which were identified through the STM screen. CgRsc3A and CgRsc3-B are the orthologs of Saccharomyces cerevisiae Rsc3 which possesses
sequence-specific DNA binding transcription factor activity and is a component of a 17 -subunit RSC (remodel the structure of chromatin) complex. CgRTT109 encodes an acetyltransferase, whose counterpart in S. cerevisiae acetylates lysine 56 on histone H 3 and functions in DNA replication and maintenance of genomic stability. Orthologs of CgRTT107 and CgSGS1 in S. cerevisiae code for a BRCT (BRCA1 C Terminus) domain-containing protein and a RecQ-related nucleolar DNA helicase, respectively and are implicated in DNA doublestrand break repair.
Phenotypic characterization of the Cgrsc3-ad, Cgrsc3-b4, Cgrtt1074, Cgrtt1094 and Cgsgs14 mutants revealed similar growth profiles in YPD and RPMI medium and replication defects in single infection assays with THP-1 macrophages (Figure 1A). Notably, deletion of the two ORFs coding for CgRsc 3 did not aggravate the replication defect in Cgrsc3-a $a b \Delta$ mutant (Figure 1A). Further, Cgrtt1074 and Cgrtt1094 exhibited sensitivity to MMS, CPT and $\mathrm{H}_{2} \mathrm{O}_{2}$ while the growth of Cgrsc3ad, Cgrsc3-ba, Cgrsc3-a 0 bs was impaired only in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$. Surprisingly, Cgsgs14, unlike its S. cerevisiae counterpart, grew like wt in the presence of DNA damaging and oxidative stress causing agents suggesting that CgSgs1 is not essential for processing of DNA double-strand breaks in C. glabrata.

To demonstrate that CgRSC3-A and CgRTT109 are involved in maintaining the chromatin structure in C. glabrata, we performed MNase digestion assay. Chromatin extracted from the YPD-grown logarithmic-phase Cgrsc3-as, Cgrsc3-a $\Delta b \Delta$ and Cgrtt1094 cells exhibited enhanced resistance to MNase digestion (Figure 1B) suggesting an altered chromatin architecture in the mutant cells.

To investigate if the altered chromatin structure of Cgrsc3-as and Cgrtt1094 lead to differential gene expression, we performed microarray analysis on 10 h RPMI-grown and macrophage-internalized $w t$ and mutant cells. Comparison of the transcript profiles of RPMI-grown Cgrsc3-a Δ and Cgrtt109د cells with those of the RPMI-cultured wt cells revealed 724 and 819 genes to be differentially regulated, respectively. Intriguingly, this gene set revealed a striking overlap with 300 induced and 252 repressed genes common to both the mutants indicating similar global regulatory roles for CgRSC3-A and CgRTT109 in cellular physiology. The common induced gene set included genes involved in chromatin silencing and remodeling, RNA metabolism, ergosterol biosynthesis, DNA
replication and repair. The repressed gene set included genes belonging to tricarboxylic acid cycle, iron-sulfur cluster assembly and mitochondrial electron transport. Further, genes implicated in DNA-dependent regulation of transcription and protein phosphorylation were uniquely down-regulated in Cgrsc3-as and Cgrtt1094 mutant respectively, while genes implicated in protein glycosylation were uniquely up-regulated in the Cgrtt1094 mutant.
A total of 214,432 and 683 genes were found to be differentially expressed in wt, Cgrsc3-as and Cgrtt1094 cells respectively, in response to macrophage internalization. Of these, 100, 219 and 346 were induced and 114, 213 and 337 were repressed in wt, Cgrsc3-as and Cgrtt1094 cells respectively. Up-regulation of the genes involved in ammonium transport, glyoxylate cycle, β-oxidation of fatty acids, meiosis, signal transduction and proteolysis was observed in wt cells while the repressed genes were implicated in iron transport and homeostasis, ergosterol biosynthesis, cell wall metabolism and response to stress. The repression of reductive high-affinity iron assimilation in 10 h macrophage-internalized C. glabrata cells implies either an iron-rich internal milieu of macrophages or an anaerobic environment.
Similar to the wt, macrophage-internalized Cgrsc3as and Cgrtt1094 cells showed up-regulation of tricarboxylic acid cycle, β-oxidation of fatty acids and signal transduction, and down-regulation of ironmetabolism, ergosterol biosynthesis and cell wall metabolism. However, contrary to wtcells, Cgrsc3as and Cgrtt1094 cells, upon macrophage internalization, displayed induction of genes implicated in the generation of precursor of metabolites and energy, cellular respiration, ironsulfur cluster assembly and amino acid metabolism, suggesting that the mutant cells, probably owing to global changes in their chromatin architecture, are unable to mount an appropriate response to restrain cellular energy metabolism in response to macrophage internal milieu.
Lastly, to examine if chromatin remodeling is important for the virulence of C. glabrata, we assessed the fungal burden for wt and the mutants in the murine model of systemic candidiasis. While we were able to recover 6×10^{5} yeast from the kidneys of mice infected with wt C. glabrata cells, 25 - to 50 -fold lower yeast CFUs were obtained from Cgrsc3-at, Cgrsc3-b4 and Cgrsc3-a4bu and 3- to 5 -fold lower CFUs for Cgrtt1074, Cgrtt1094 and Cgsgs14 infected mice (Figure 1C). No
significant differences in the fungal burden were seen in the liver and spleen of wt and Cgrsc3a infected mice (Figure 1C). The yeast CFUs recovered from the liver of Cgrtt1074 and Cgsgs14 infected mice was ~2-fold lower than the w t-infected mice (Figure 1C). Interestingly, Cgrtt1094 mutant showed reduced survival in all the three target organs, kidney, liver and spleen (Figure 1C). Together, these data implicate CgRSC3-A, CgRSC3-B, CgRTT107, CgRTT109, and CgSGS1 genes in the survival of C. glabrata in a mammalian host. Currently, we are trying to investigate the link between globally altered chromatin architecture and the metabolic adaptation and replication of C. glabrata cells in the macrophage milieu.
2. Identification of targets for combinatorial therapy with azole antifungals.
Summary of the work done until the beginning of this reporting year (upto March 31, 2011)
We have previously screened 9,134 C. glabrata Tn7insertional mutants for their inability to survive fluconazole (a fungistatic azole antifungal) stress and identified two components of RNA polymerase II mediator complex (CgMed2 and CgPgd1), three players of Rho GTPase-mediated signaling cascade (CgBem2, CgSIt2 and CgBnr1) and two proteins implicated in actin cytoskeleton biogenesis (CgPan1) and ergosterol biosynthesis (CgErg4) respectively, which are required to sustain viability during fluconazole stress. Notably, Rho1,

Figure 1. Genes involved in chromatin organization and DNA repair are required for virulence of C. glabrata. A. Single-C. glabrata strain infections of PMA-activated THP-1 cells to assess the number of intracellular yeast. THP-1 macrophages were lysed 2 h and 24 h post infection and cell lysates were plated onto YPD medium to enumerate the viable C. glabrata cells. Increase in CFUs for each strain was determined by dividing the CFUs obtained at 24 h with those for 2 h . Survival ratio represent the CFU ratio of mutant/wild type after 24 h of infection. B. Chromatin of Cgrsc3-a Δ, Cgrsc3-as b Δ and Cgrtt1094 mutants display reduced sensitivity to micrococcal nuclease digestion. Chromatin extracted from cells grown in YPD medium were treated with MNase at 10 units $/ \mathrm{ml}$ for 15 min and 200 ng digested samples were resolved by agarose gel electrophoresis. C. Mutants defective in chromatin organization and DNA damage repair are attenuated for virulence. BALB/c mice were infected with C. glabrata cells intravenously and sacrificed 7 days after infection. Diamond and bar represent CFUs recovered from the target organs for individual mice and the geometric mean $(\mathrm{n}=13-16)$ of the CFUs per organ, respectively.

Project 2: Innate resistance of C. glabrata to fluconazole

Objectives

1. Understanding the molecular basis of low inherent susceptibility of C. glabrata towards fluconazole;
a small guanosine triphosphatase, is an upstream component of Pkc1 (Protein kinase C)-activated cell wall integrity (CWI) MAPK cascade in S. cerevisiae and is positively and negatively regulated by GDP-GTP exchange factors and GTPaseactivating proteins (GAPs), and GDP dissociation inhibitors (GDIs), respectively.

Details of the progress made in the current reporting year (April 1, 2011 - March 31, 2012)

To investigate the role for Rho1-regulated PKCmediated signaling in the survival of fluconazole stress in C. glabrata, we first focused on CgBEM2 and CgSLT2 which are predicted to code for a Rho1 GTPase activating protein (RhoGAP) and a serine/ threonine MAP kinase, respectively. The ortholog of CgBem2 in S. cerevisiae negatively regulates Rho1 and is implicated in cell polarity and morphogenesis, cell wall integrity and actin cytoskeleton biogenesis. SIt2 in S. cerevisiae is the terminal serine/threonine MAP kinase of the PKC cascade and regulates the cellular response, through the activation of the transcription factors Swi4/Swi6 and Rlm1, to environmental stress signals. To examine the role of CgBem 2 and CgSI 2 in cellular response to fluconazole, we deleted the CgBEM2 and CgSLT2 genes with the dominant nourseothricin resistance marker. Phenotypic characterization of the Cgbem2a and Cgslt2a knock-outs revealed sensitivity to fluconazole (Figure 2A) which was complemented by the ectopic expression of the respective genes from plasmids (Figure 2A). Interestingly, growth of Cgbem24 was strongly attenuated at a higher temperature of $42^{\circ} \mathrm{C}$ (Figure 2A). Further, microscopic examination of Cgbem2d cells revealed defects in bud emergence and variations in size and morphology with average size range of $4-7 \mu \mathrm{~m}$ compared to the mean cell size of $3.9 \mu \mathrm{~m}$ in wt. A typical logarithmic-phase culture of Cgbem2s accumulated a high percentage (20$25 \%$) of the cells as oversized, large, un/smallbudded cells harboring multiple nuclei (Figure 2B) indicative of CgBem2's role in bud emergence.

To investigate if CgBem2 acts as a negative regulator of CgRho1, we examined the phosphorylation state of CgSIt2 (an indicator of Pkc1 activation) in Cgbem24 cells via an antibody that detects only the doubly phosphorylated (active) form of CgSIt2. Fluconazole exposure led to the appearance of both, a 56 kDa band corresponding to phosphorylated CgSIt2, in wt cell extracts, as well as a three-fold increase in total CgSlt2 levels (Figure 2C). Compared to the wt cells, basal levels of CgSlt2 phosphorylation were elevated in the Cgbem2s strain and a further two-fold induction was seen upon drug exposure (Figure 2C). Importantly, ectopic expression of CgBEM2 in Cgbem2s mutant resulted in phosphorylated CgSIt2 levels comparable to those of the wt cells (Figure 2C). Together, these findings suggest that Rho1-dependent CgPkc1-mediated CWI signaling cascade is constitutively active in C. glabrata mutants lacking CgBem2.

Next, to examine the link between the constitutively active CgRho1-Pkc1 signal transduction cascade and survival of fluconazole stress, we checked whether inhibition of PKC signaling could rescue the fluconazole-induced cell death in Cgbem2s mutant. We found that while co-treatment of wt cells with fluconazole and staurosporine (PKC inhibitor) had a cidal effect with only 15% cells remaining viable, addition of staurosporine increased the viability of fluconazole-treated Cgbem2s cells to 43% from 29\% (Figure 2D). Notably, a synergistic cidal effect of fluconazole was observed with geldanamycin (Hsp90 inhibitor) in wt and Cgbem2s cells with both strains displaying survival rates of 15\% (Figure 2D). FK506, a calcineurin signaling inhibitor, was used as a control as it had previously been shown to act synergistically with fluconazole in C. glabrata (Figure 2D). Together, these results suggest that the inability of Cgbem2a cells to survive fluconazole stress is partly owing to a hyperactivated CgPkc1mediated CWI pathway.
To decipher the molecular mechanism for enhanced susceptibility of Cgbem2s strain towards fluconazole, we examined the expression of three genes (CgCDR1, CgCDR2 and CgSNQ2) encoding plasma membrane ATP-binding cassette transporters, and two genes (CgPDR1 and CgERG11) which code for a zinc finger transcriptional regulator of pleiotropic drug resistance genes, and lanosterol 14- α demethylase (target of fluconazole), respectively. These genes have previously been reported to contribute to azole resistance in C. glabrata. Consistent with the earlier reports, wt C. glabrata cells responded to fluconazole exposure by elevating the expression of genes coding for drug transporters, Cdr1, Cdr2 and Snq2 and the transcriptional factor CgPdr1 (Figure 2E). In contrast, fluconazole-treated cells of Cgbem2s showed neither induction of the genes coding for ABC transporters nor for the transcriptional regulator (Figure 2E). However, fluconazole-induced transcriptional activation of CgERG11 (3-4 fold) and CgSLT2 (2.5 fold) was observed in both wt and Cgbem2s cells excluding the possibility of global transcriptional defects in the Cgbem 2Δ mutant. (Figure 2E). These findings implicate CgBem 2 , a negative regulator of CgRho1 GTPase, in the upregulation of genes coding for multidrug transporters upon fluconazole exposure. Experiments are currently underway to investigate the link between CgBem2 function and the activation of efflux pumps and survival of azole stress.

Figure 2. CgBEM2 is required for survival of fluconazole stress and activation of multidrug efflux pumps upon fluconazole exposure. A. Serial dilution spotting assays on YPD plates containing either $16 \mu \mathrm{~g} / \mathrm{ml}$ fluconazole (FLC), or $15 \mu \mathrm{~g} / \mathrm{ml}$ clotrimazole (CTZ) or YPD plates incubated at $42^{\circ} \mathrm{C}$. V refers to an empty vector. B. Differential interference contrast (DIC) and fluorescence confocal images of DAPI stained Cgbem2s mutant revealed enlarged, multi-nucleated cells. C. Western blot analysis detecting the total and phospho form of CgSlt 2 with anti-phospho-p44/42 MAPK antibody on C. glabrata cells grown either in YPD or YPD medium containing $16 \mu \mathrm{~g} / \mathrm{ml}$ fluconazole for 4 h . D. Trypan blue exclusion assay to assess the fungicidal nature of fluconazole ($128 \mu \mathrm{~g} / \mathrm{ml}$) in the presence of $2 \mu \mathrm{~g} / \mathrm{ml}$ FK506, $25 \mu \mathrm{M}$ geldanamycin (GLD) and $2 \mu \mathrm{~g} / \mathrm{ml}$ staurosporine (STS) in 24 h -grown cultures. E. qRT-PCR analyses of CgCDR1, CgCDR2, CgSNQ2, CgPDR1 CgSLT2 and CgERG11 genes on cells grown in $16 \mu \mathrm{~g} / \mathrm{ml}$ fluconazole for 4 h . Data were normalized to an internal CgGAPDH mRNA control.

Publications

1. Bairwa G and Kaur R (2011). A novel role for a glycosylphosphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata. Molecular Microbiology 79: 900-913.
2. Borah S, Shivarathri R and Kaur R (2011). The Rho1 GTPase-activating protein CgBem 2 is required for survival of azole stress in Candida
glabrata. Journal of Biological Chemistry 286:34311-34324.
3. Yadav AK, Desai PR, Rai MN, Kaur R, Ganesan K and Bachhawat AK (2011). Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: Essential in C. glabrata, and essential for virulence in C. albicans. Microbiology 157: 484-495.

LABORATORY OF IMMUNOLOGY
 Understanding the Role of Advanced Glycation End Products (AGE) in Inducing Inflammation, Apoptosis, and Lipogenesis

Principal Investigator	Sunil K Manna
PhD Students	Sidhartha K Mahali
	S Adeel Husain Zaidi
	Raveendra Babu M
	Neeharika Verma
	Pankaj Gupta
Other Members	Nune Ravi Prakash
	TNavaneeta
Collaborators	Biswadev Bishayi
	Chitta S Kumar

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Jul. 2011)
Project Senior Research Fellow
Technical Assistant
Calcutta University, Kolkata
SK University, Anantapur

Objectives

1. Understanding and regulation of advanced glycation endproducts (AGE)-mediated inflammation, obesity and diabetic responses;
2. Detection of the molecular mechanisms mediated by novel small molecules to induce anti-inflammatory, anti-teratogenic, and antitumorigenic responses;
3. Regulation of cytokine receptors to regulate tumorigenesis and inflammatory responses.
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
Considering the role of retinoids in regulation of more than 500 genes involved in cell cycle and growth arrest, a detailed understanding of the mechanism and its regulation is useful for therapy. In this report, we prove the detailed mechanism of regulation of retinoic acid-mediated cell signaling by azadirachtin, an active component of neem extract. Our data suggest that azadirachtin interacts with retinoic acid receptors and suppresses ATRA binding, inhibits falling off the receptors and activates transcription factors like CREB, Sp1, NF-kB, etc. Thus, azadirachtin exerts anti-inflammatory and anti-metastatic responses by a novel pathway which would be beneficial for further anti-inflammatory and anti-cancer therapies (Thoh et al., J. Biol. Chem., 286: 4690-4702, 2011). The Dracaena resin is widely used in traditional medicine as an anti-cancer agent and benzofuran lignin is the active component in it. Our data suggest that benzofuran lignin-mediated cell death
is partially dependent upon NF-kB, but predominantly dependent on p 53 . Thus, this novel benzofuran lignin derivative can be an effective chemopreventive agent against malignant T-cells (Manna et al., J. Biol. Chem., 285: 22318-22327, 2010). Doxorubicin is one of the most effective molecules used in the treatment of various tumors. We provided evidence that doxorubicin-induced cell death was more aggressive (faster and intense) in p53 negative breast as well as other tumor cells. The basal expression of Ras oncoprotein was more in p53 positive cells that might increase the basal expression of Fas in these cells. Overexpression of Ras decreased the amount of Fas in p53 negative cells thereby decreasing doxorubicinmediated aggressive cell death. Overall, this study helped to understand the much studied chemotherapeutic drug, doxorubicin-mediated cell signaling cascade that leads to cell death in p53 positive and negative cells. High basal expression of Fas might be an important determinant in doxorubicin-mediated cell death in p53 negative cells (Manna et al., J. Biol. Chem., 286: 7339-7347, 2011).

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
Project 1: Double-edged sword effect of biochanin to inhibit nuclear factor kappaB: Suppression of serine/threonine and tyrosine kinases
Several protein tyrosine kinase (PTK) inhibitors predominantly isoflavones, such as genistein, erbstatin, quercetin, daidzein, present in red clover,
cabbage and alfalfa, show apoptotic effects against cancer cells. In this study, we found that biochanin, a methoxy form of genistein (Figure 1A), inhibits IL-8-mediated activation of nuclear transcription factor kappaB (NF-кB) (Figure 1B), activator protein 1 (AP-1), and NF-кB-dependent genes like ICAM1 and Cox2 (Figure 1C) more potently than genistein as shown in Jurkat T-cell line. Both biochanin and genistein potently inhibited activity of Lck and Syk (Figure 1F and 1G, lower panels), but biochanin
specifically inhibited activity of IKK (Figure 1G, upper panels). Biochanin inhibited completely NFκB activation induced by PMA, LPS, pervanadate (PV), or $\mathrm{H}_{2} \mathrm{O}_{2}$, but only partially that induced by TNF α. Genistein was unable to inhibit IL-8-induced IKK activity, but it blocked PV-induced IKK activity. Biochanin inhibited activation of NF-кB by TRAF6 completely, but by TRAF2 partially. In silico data suggested that biochanin interacted more strongly with serine/threonine kinase than genistein (Figure

Figure 1. Biochanin inhibits both Ser/Thr and Tyrosine kinases and suppresses NF-kB. Structure of biochanin and genistein (A). Biochanin, but not genistein, erbstatin, quercetin, or diadzein-mediated NF-kB DNA binding activity as shown by gel shift assay using nuclear extracts of treated Jurkat cells followed by stimulation with IL-8 (B). Biochanin, but not genistein completely inhibited ICAM1 and Cox2 expression induced by IL-8 as measured from whole cell extracts (C). Interaction of biochanin and genistein with Ser/Thr kinase. Screen shot of Ser/Thr kinase (blue color cartoon) interaction with biochanin and the zoom view reveals the active site amino acids (lime green color sticks) forming a hydrogen bond with biochanin (red color ball and sticks) (D , left panel). Screen shot of Ser/Thr kinase (green color cartoon) interaction with genistein and the zoom view reveals the hydrophobic pocket of Ser/Thr kinase (pale yellow color sticks) forming a hydrogen bond with genistein (deep petal in color) (D , right panel). Jurkat cells, transfected with vector or p65 construct and NF-кB-luciferase reporter gene construct for 3 h and then cultured for 12 h . Cells were treated with different concentrations of biochanin for 6 h . Nuclear extracts were assayed for NF-кB DNA binding by gel shift assay (E). Cells were treated with $10 \mu \mathrm{M}$ of biochanin or genistein for 6 h and then stimulated with IL-8 (100 ng/ ml) for 6 h . The amount of phospho-Syk was measured from whole cell extracts by Western blot (F). Cells were treated with different concentrations of biochanin or genistein for 6 h and then stimulated with IL-8 (100 ng/ml) for 6 h . The whole cell extracts were used to assay IKK activity using GST-IкB α as substrate (G, upper panels). Similarly, proteins were immunoprecipitated with anti-Lck $(1 \mu \mathrm{~g}) \mathrm{Ab}$ and kinase was assayed using ${ }^{32} \mathrm{P}-\gamma$ ATP (G, lower panels).

Figure 2. Advanced glycation end products (AGE) induce $\mathbf{C a}^{2+}$ mediated apoptosis by increasing amount of interleukin-8. U-937 cells were treated with AGE-HSA ($100 \mu \mathrm{~g} / \mathrm{ml}$) for different times. After these treatments, cell death detected by Annexin V-PE and analyzed in FACS (A). Cells were incubated with AGE-HSA for different times and nuclear extracts were assayed for NF-кB, AP-1, and NF-AT DNA binding (B). The cell culture supernatant was taken from AGE-HSA-stimulated cells for different times and amount of myeloperoxidase, alkaline phosphatase (Alk Phosphatase), and elastase was measured by measuring the activities of these enzymes as detected by specific chromogenic substrates (C). The culture supernatants were concentrated 10 times with 3 kDa cut off filter and the amounts of IL-8 and Proteinase 3 were measured by Western blot. The amount of IL-8 was measured from whole cell extracts ($200 \mu \mathrm{~g}$ protein) of the cell pellet of the same treatment by Western blot (D). U-937 cells were treated with AGEHSA for different times. Intracellular free Ca^{2+} was measured using Fura-2AM as a fluorescent probe in a fluorimeter (E). Cells were treated with $100 \mu \mathrm{~g} / \mathrm{ml}$ AGE-HSA for different times or CsA $(2.5 \mu \mathrm{M})$ for 2 h and then treated with AGE-HSA for 48 h . Calcineurin activity was assayed from whole cell extracts (F). Cells, treated with AGE-HSA ($100 \mu \mathrm{~g} / \mathrm{ml}$) for different times, were extracted and the amount of FasL was measured from WCE (G). U-937 cells, treated with cystamine $(500 \mu \mathrm{M})$, brefeldin $\mathrm{A}(5 \mu \mathrm{~g} / \mathrm{ml})$, or diltiazem $(100 \mu \mathrm{M})$ for 2 h were stimulated with AGE-HSA for 24 h . Culture supernatant was concentrated 10 times and used to detect IL-8 and Proteinase 3 by Western blot (H).

1D), though both equally interacted with PTK. Biochanin was unable to inhibit NF-kB DNA binding in p65-overexpressed cells (Figure 1E). The data shows that both biochanin and genistein are potent inhibitors of PTK, but biochanin is a potent inhibitor of serine/threonine kinase too. Formononetin, having hydroxyl methoxy group is a less potent inhibitor of IKK than biochanin. Biochanin inhibits NF-кB activation not only by blocking the upstream IKK, but also PTK that phosphorylate tyrosine residues of $\mathrm{I}_{\kappa} \mathrm{B} \alpha$. Thus, the double-edged sword effect of inhibition of $\mathrm{NF}-\mathrm{kB}$ via inhibition of both serine/threonine kinase and PTK by biochanin might show useful therapeutic value against activities of cells that lead to tumorigenesis and inflammation. Overall, the data suggests that bifunctional biochanin might be an important target to regulate cellular physiology by inactivating both Ser/Thr and tyrosine kinases at very low concentrations where no toxic effect is seen. Thus, the double-edged sword effect of biochanin to inhibit cellular kinases may be useful to regulate several biological responses that are deleterious to cells, and use this molecule as a therapeutic.
Project 2: Advanced glycation end products (AGE) induce apoptosis via a novel pathway: Involvement of Ca^{2+} mediated by interleukin-8
Advanced glycation end products (AGE) accumulate in diabetic patients due to high blood glucose levels and cause multiple deleterious effects. In this report we provide evidence that the AGE increased cell death (Figure 2A), one such deleterious effect. Methyl glyoxal coupled human serum albumin (AGE-HSA) induced transcription factors like NF-кB, NF-AT, and AP-1 (Figure 2B). AGE acts through its cell surface receptor, RAGE and degranulates vesicular contents (Figure 2C) including interleukin-8 (IL-8) (Figure 2D). The number of RAGE, as well as NF-kB activation, is low but the cell death is more in neuronal cells upon AGE-treatment. Degranulated IL-8 acts through its receptors, IL-8Rs and induces sequential events in cells - increase in intracellular Ca^{2+} (Figure 2E), activation of calcineurin (Figure 2F), dephosphorylation of cytoplasmic NF-AT, nuclear translocation of NF-AT, and expression of FasL (Figure 2G). Expressed FasL increases activity of caspases and induces cell death. Though AGE increases amount of ROI, accompanying cell death is not dependent upon ROI. By inhibiting degranulation, the amount of AGE-mediated cell death was reduced and this correlated with the amount of IL-8 degranulation (Figure 2H). Thus,
this study may be important in several age-related neuronal diseases where AGE-induced apoptosis is observed because of high amounts of AGE.

We report here for the first time that the early events mediated by AGE signaling leads to cell death proceeding through release of IL-8. IL-8-mediated cellular responses lead to activation of calcineurin, nuclear translocation of NF-AT, and expression of FasL. As an early response, AGE degranulates several proteolytic enzymes and cytokines and these molecules induce inflammatory responses. The previous reports that dealt with deleterious effect of AGE in cells might be answered through our findings. Thus, this study has immense importance to understand the mechanism of action of AGE to induce its deleterious effects like neurodegeneration in physiological conditions, especially in diabetic and aged persons.

Publications

1. Kole L, Giri B, Manna SK, Pal B and Ghosh S (2011). Biochanin-A, an isoflavon, showed antiproliferative and anti-inflammatory activities through the inhibition of iNOS expression, p38MAPK and ATF-2 phosphorylation and blocking NF-кB nuclear translocation. European Journal of Pharmacology 653: 8-15.
2. Mahali S, Raviprakash N, Raghavendra PB and Manna SK (2011). Advanced glycation end products (AGEs) induce apoptosis via a novel pathway: Involvement of $\mathrm{Ca} 2+$ mediated by interleukin-8 protein. Journal of Biological Chemistry 286: 34903-34913.
3. Majumdar S, Dutta K, Manna SK, Basu A and Bishayi B (2011). Possible protective role of chloramphenicol in TSST-1 and coagulase positive Staphylococcus aureus induced septic arthritis with altered levels of inflammatory mediators. Inflammation 34: 268-281.
4. Manna SK, Gangadharan C, Edupalli D, Raviprakash N, Navneetha T, Mahali S and Thoh M (2011). Ras puts brake on doxorubicinmediated cell death in p53 expressing cells. Journal of Biological Chemistry 286: 73397347.
5. Naik US, Gangadharan C, Abbagani K, Nagalla B, Dasari N and Manna SK (2011). A study of nuclear transcription factor-kappa B in childhood autism. PLoS One 6: e19488.
6. Thoh M, Babajan B, Raghavendra PB, Sureshkumar C and Manna SK (2011).

Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses. Journal of Biological Chemistry 286: 4690-4702.
7. Fialho AM, Salunkhe P, Manna SK, Mahali S and Chakrabarty AM. Glioblastoma multiforme: Novel therapeutic approaches. ISRN

Neurology (In press).
8. Manna SK. Double-edged sword effect of biochanin to inhibit nuclear factor kappaB: Suppression of serine/threonine and tyrosine kinases. Biochemical Pharmacology (In press).

LABORATORY OF BACTERIAL GENETICS
 Studies on Gene Regulation, Transcription Termination, and Amino Acid and Ion-Transport in Escherichia coli

Principal Investigators	J Gowrishankar Abhijit A Sardesai
RhD Students	Syeda A Haneea
	Shivalika Saxena
	Carmelita N Marbaniang
	L Shanthy
	Amit Pathania
	Aanisa Nazir
	Amar Deep Lakra
	Rajvardhan M Kamble
	Suchitra Upreti
	Nalini Raghunathan
	VK Mishra
	KAnupama
	J Krishna Leela
	TS Shaffiqu
	Vimala Allada
	P Hima Bindu
	Vijay Gunasekaran
	Noor Md Shaik

Director \& Staff Scientist
Staff Scientist
Staff Scientist
Senior Research Fellow (Till Oct. 2011)
Senior Research Fellow (Till Sep. 2011)
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Jul. 2011)
Junior Research Fellow (Since Feb. 2012)
Staff Scientist
Staff Scientist
Technical Officer III
Technical Officer I
Project Associate
Project Associate
CDFD-IKP Fellow
CDFD-IKP Fellow

Objectives

1. To study the ArgP regulon and the mechanism of ArgP-mediated transcriptional regulation of the arginine exporter ArgO;
2. To test the model of and mechanisms mediating R-loop formation from nascent untranslated transcripts;
3. To investigate an unusual phenomenon of K^{+} toxicity in hns trx double mutant strains;
4. To determine the role of thil in E. coli osmoadaptation;
5. To understand biological functions of the stringent response factors (p)ppGpp/DksA;
6. To delineate roles of transketolase function in E. coli physiology.

Summary of work done until the beginning of this reporting year (upto March 31, 2011)
The work undertaken in earlier years on each of the objectives has been summarized in the first parts of the corresponding descriptions below.

Work undertaken in the current reporting year (April 1, 2011 - March 31, 2012)

1. Studies on Rho-dependent transcriptiontermination and the R-loop model
Cotranscriptional occupancy of mRNA by ribosomes, that is, transcription-translation coupling, is observed in Bacteria, Archaea and some eukaryotic negative-strand RNA viruses, and mechanisms exist in them to terminate the synthesis of transcripts that are not simultaneously translated. In E. coli, this process is referred to as Rho-dependent transcription termination.
In work from this laboratory that was described in the earlier reports, we had shown that a newly isolated missense mutation in nusA (-R258C) confers a phenotype of defective Rho-dependent transcription termination in E. colijust as do certain missense mutations in rho or nusG. The H-NS family of nucleoid proteins were also shown to modulate the efficiency of Rho-dependent termination, which was sought to be explained by a new model invoking
a novel role for the polymeric architectural scaffold formed on DNA by these proteins. Several phenotypes in the nusG, rho, and nusA missense mutants were also interpreted as evidence in support of the increased occurrence (by reannealing to DNA of nascent untranslated transcripts) of RNA-DNA hybrids or R-loops in them. These phenotypes include synthetic lethalities with deficiencies of R-loop removing enzymes RNase H1 or RecG, increased copy number of plasmids (such as pACYC184 or pUC19) that are R-loop dependent for replication, and suppression of lethality associated with RNase E deficiency by the rho/nusG/nusA mutations through the bypass mechanism of R-loop mediated RNA degradation.

In the current reporting year, two separate lines of evidence have been obtained to validate the R-loop model and to establish that Rho-dependent transcription termination is essential for genomewide R-loop prevention. The first was the demonstration by a bisulphite sensitivity assay of increased R-loop occurrence in a nusG missense mutant, and the second was the finding of suppression of $\Delta r h o$ and $\Delta n u s G$ lethalities by ectopic R-loop helicase expression, which are further described below.
R-loop occurrence in vivo can be demonstrated by an assay for increased sensitivity of C to T conversions on the displaced DNA single strand upon exposure in vitro to sodium bisulphite. Total nucleic acids isolated without denaturation from an MG1655 derivative, as well as from its isogenic nusG (-G146D) missense mutant defective for Rhodependent termination, were treated with bisulphite and subjected to whole-genome next-generation resequencing. The complete population of sequence reads (each ~50 bases long) was first mapped to the MG1655 reference genome sequence yielding >100 X-coverage, and those that remained unmapped were then sequentially mapped to two modified MG1655 upper strand genome sequences, the first bearing conversions of all C residues to T's and the second of all G's to A's. It was expected that DNA segments which had suffered clustered C-to-T changes would generate reads that remain unmapped to the native reference sequence, but instead would map to the C-to-T or G-to-A converted reference sequences depending upon whether the bisulphite mutagenesis had targeted the upper or lower genomic strands, respectively.

Upon mapping of reads to the native reference genome, we found that $>90 \%$ of cells in the nusG mutant culture are deleted for the cryptic prophage rac. Since another nusG-G146D strain GJ3107 in our lab stock was also shown to have suffered a spontaneous excision of rac, we conclude that there exists a positive selection for loss of rac in presence of this mutation.
The aggregate number of reads mapping to the two converted reference genomes taken together (and expressed as a ratio of those mapping to the native reference genome) was approximately threefold higher in the nusG mutant (20\%) compared to that in the wild-type strain (7.5\%), in accord with the genetic evidence for increased occurrence of R-loops in the former. The numbers of reads (per kb) mapping to the C-to-T and G-to-A converted reference genomes for each of the >4300 genes were then determined, and are referred to as $\mathrm{N}_{\text {upper }}$ and $\mathrm{N}_{\text {lower }}$, respectively. With increasing algebraic values of [$\mathrm{N}_{\text {upper }}-\mathrm{N}$ lower] in the nusG strain, genes transcribed in clockwise or ' + ' (relative to those in counterclockwise or '--') orientation were progressively over-represented across the genome (that is, as one moves from left to right in the bar chart, for example, of genes in the counterclockwise replication arm shown in Figure 1), and vice versa. These results indicate that it is the nontemplate strand of transcription which exhibits preferential bisulphite reactivity across the vast majority of genes. At the same time, highly expressed genes such as those encoding proteins of the transcription-translation apparatus were not overly bisulphite-sensitive, which suggests that bisulphite was not simply targeting the unpaired non-template strand within an RNA polymerase transcription bubble.
An effect of replication fork direction on the read numbers mapping to the converted reference genomes was also detected from the frequency distribution data for the nusG mutant, with the value of $\left[\mathrm{N}_{\text {upper }}-\mathrm{N}_{\text {lower }}\right]$ being higher on average by around 300 for each of the genes in both ' + ' and '-' orientation on the clockwise chromosomal replication arm (from 86 min through 100/0 min to 32 min of the E. coli map) relative to that for genes in corresponding orientation on the counterclockwise replication arm (from 82 min to 36 min). We surmise that these features reflect the bisulphite sensitivity of single-stranded regions on the lagging-strand template in replication, which will be expected to contribute to higher values of $\mathrm{N}_{\text {upper }}$ and $\mathrm{N}_{\text {lower }}$ on the clockwise and counterclockwise replication arms, respectively.

The patterns of bisulphite reactivity in the wild-type strain were identical to those in its nusG derivative with regard both to the relative sensitivities of, and to strand-biasness in, the individual genes ($r=0.87$ and 0.93 , respectively). Thus, the differences between parent and mutant strains were only quantitative and not qualitative, suggesting that R-loops also occur at lower frequencies in wild-type E. coli, including presumably from promiscuously initiated and untranslated transcripts across the genome. Consistent with this interpretation, the magnitude of global bisulphite sensitivity of a nucleic acid preparation from the nus G derivative in which RNase H was overexpressed, as assessed by the proportion of reads mapping to the two converted reference genomes versus those to the native reference genome, was 80% lower even than that in the untreated wild-type strain.

Around 77 single- and multi-gene loci or clusters of increased bisulphite sensitivity were identified, each possessing at least one gene that scored above the 97th percentile for $\mathrm{N}_{\text {upper }}$ or $\mathrm{N}_{\text {lower }}$ values for genes in ' + ' and '-' orientations on the two replication arms of the wild-type and nusG strains. The clusters were distributed non-randomly, with disproportionately increased representation for genes within $10 \mathrm{~min}(\sim 0.5 \mathrm{Mbp})$ on either side of the chromosomal replication origin (Figure 2). In a majority of the clusters, the regions of heightened bisulphite sensitivity were confined to just one of the two DNA strands but included genes in both orientations or in large operons, reflecting the effects of polarity, antisense transcription or readthrough across normal termination signals which are three of the postulated targets of Rho-

Figure 1. Frequency distribution of genes of counterclockwise replication arm transcribed in '+' (Series 1) and ' - ' (Series 2) orientations in different $\left[\mathrm{N}_{\text {upper }}-\mathrm{N}_{\text {lowerl }}\right.$ intervals, as indicated.

In the wild-type as well as nusG strains, increased bisulphite sensitivity of individual genes was moderately correlated with increased content of G nucleotides on the non-template strand, which can be explained by the increased propensity for Rloops from G-rich transcripts. A strong inverse correlation was also detected between bisulphite sensitivity and the content of A-nucleotide residues on the non-template strand.
dependent termination. About fifty genes in the clusters have also earlier been identified, by another less direct method, to be close to putative targets of Rho-dependent termination. Likewise, several clusters were found to overlap with, or reside adjacent to, the horizontally acquired non-essential gene regions that were earlier proposed to be silenced by Rho-dependent termination.

Figure 2. Location of gene2 clusters of high values of $\mathrm{N}_{\text {upper }}$ (outer circle) and $\mathrm{N}_{\text {lower }}$ (inner circle) on the circular E. coli chromosome.

The analysis of the genome sequencing data from this experiments has therefore established that in a nusG mutant defective for Rho-dependent termination, there is an increased genome-wide sensitivity to bisulphite indicative of a much increased frequency of R-loops, since it is also suppressed upon RNase H overexpression.

The second set of experiments to test the R-loop model was based on the fact that each of the proteins Rho, NusG and NusA involved in Rhodependent termination is essential for viability of the E. coli wild-type strain MG1655; NusG and NusA are also involved in antitermination of the naturally untranslated transcripts of ribosomal RNA operons, as well as in regulating the rates of transcription elongation of all genes. In light of our model that defective Rho-dependent termination is associated with increased occurrence of toxic Rloops, we tested whether ectopic expression of a phage T4-encoded R-loop helicase UvsW would rescue the lethality of $\Delta r h o, \Delta n u s G$, and $\Delta n u s A$ mutants. Since UvsW also negatively regulates
copy number of many commonly used plasmids, its graded expression in cells was achieved from a single copy chromosomal $P_{\text {tac }}$-UvsW construct (by addition of varying concentrations of the inducer IPTG), and control derivatives similarly expressed a UvsW variant (-K141R) that is inactive for its ATPase and helicase functions. Viability of the $\Delta r h o$ strains (and likewise of $\Delta n u s G$ or $\Delta n u s A$, see below) was assessed by the ability of their derivatives carrying the cognate single-copynumber rho ${ }^{+}$(or nus G^{+}or nus A^{+}) lac Z^{+}plasmid to yield spontaneous plasmid-free segregants, which could be distinguished by blue-white screening of colonies on plates supplemented with Xgal.

It has been reported that NusG and NusA, but not Rho, are dispensable in MDS42, an MG1655 derivative with a 14% reduced genome content because of engineered deletions of several horizontally acquired cryptic prophages and insertion elements, and that NusG is also dispensable in MG1655 deleted for just the rac prophage; accordingly, our initial experiments were
done in a Δ lac derivative of MDS42. With either of two deletion rho alleles, MDS42 derivatives with $P_{\text {tac }}-U v s W$, but not $P_{\text {tac }}$-UvsW-K141R, were viable on glucose minimal medium supplemented with $\geq 25 \mu \mathrm{M}$ IPTG; both strains were inviable on rich (LB) medium at any IPTG concentration. The rho ${ }^{+}$ $\mathrm{P}_{\text {tac }}$-UvsW derivative was also killed on LB medium with $\geq 50 \mu \mathrm{M}$ IPTG, indicative presumably of Rloop helicase toxicity through unwinding of the RNA primers for Okazaki fragment synthesis; indeed, UvsW overexpression (elicited with $500 \mu \mathrm{M}$ IPTG on minimal medium) was more toxic in the rho ${ }^{+}$ than $\Delta r h o$ strain despite the levels of UvsW being similar in both, suggestive of a protective titration effect by genome-wide prevalence of R-loops in the latter (Figure 3). Interestingly in MG16554rho as well, UvsW expression from $P_{\text {tac }}$ conferred viability, but again only so in minimal medium (with an optimal growth rate of $0.29 \mathrm{~h}^{-1}$, that is, 45% of that in MG1655).

Figure 3. Viability assay of $r h o^{+}$and $\Delta r h o$ derivatives of MDS42 bearing $\mathrm{P}_{t a c}$-UvsW on LB and minimal media with varying concentrations of IPTG. Note that the Δ rho strain is viable only on minimal medium with $>0.1 \mathrm{mM}$ IPTG, and that UvsW expression is more toxic in rho+ than $\Delta r h o$ strain on minimal medium with 0.5 mM IPTG.
As with $\Delta r h o$, lethality conferred by $\Delta n u s G$ (three alleles tested, including one encoding deletion of only the C-terminal domain) in MG1655 was rescued by UvsW but not UvsW-K141R; in these cases, viability was restored by UvsW on both rich and minimal media (with optimal growth rates of $0.34 \mathrm{~h}^{-1}$ and $0.21 \mathrm{~h}^{-1}$, respectively). In MDS42AnusG, which by itself was only viable (and very poorly so) in rich medium, UvsW expression conferred robust growth even on defined media. The double mutant $\Delta r h o \Delta n u s G$ derivative of MDS42 but not MG1655 was viable with UvsW on minimal medium. Overexpression (from $P_{\text {ara }}$) of neither RecG nor RNase H1 rescued MDS42arho or MG1655 nnusG lethalities.

For nusA, four different deletion alleles tested were each lethal in both MG1655 and MDS42 but, unlike
with $\Delta r h o$ or $\Delta n u s G$, none could be rescued on any medium by expression of UvsW.

These results allow us to conclude that the essentiality of Rho and NusG is related solely to their function in reducing the pervasive occurrence of R-loops from nascent untranslated transcripts across the genome (and the consequent blockage of replication fork progression); the fact that $\Delta n u s A$ is not rescued by UvsW indicates that NusA has essential role(s) in addition to that in Rhodependent termination.

The rescue by UvsW of $\Delta r h o$ lethality only in minimal but not rich media would suggest that rectification of the problem caused by residual R-loops in these cells requires sufficient time to be available between the passage of successive replication forks across them. A mutant RNA polymerase RpoB*35 (-H1244Q) which is less prone to stalling and backtracking and confers tolerance to Rho inhibition, did restore viability to MDS424rho in minimal medium but (as also reported earlier) was unable to do so on rich medium; RpoB*35 could not rescue MG1655 Δ nusG nor the $\Delta r h o$ derivatives of MG1655 or MG1655 Δ rac. Of two other RpoB variants that suppress phenotypes associated with Rhodependent termination, RpoB101 (-Q513L) but not RpoB8 (-513P) conferred viability to MDS42drho on minimal medium. The combined presence of RpoB*35 and UvsW restored viability even on rich media to the $\Delta r h o$ derivatives of MDS42 and MG1655 4 rac but not of MG1655. UvsW has been reported to function as a junction helicase for restoration of collapsed replication forks, and it is possible that this activity may additionally contribute in the rescue of $\Delta r h o$ and $\Delta n u s G$ lethality.

Thus, our data suggest that the need for efficient Rho-dependent termination is reduced progressively and independently (i) from MG1655 through its Δ rac derivative to MDS42, (ii) upon reduction in growth rate, (iii) in presence of RpoB*35, and (iv) more so upon UvsW expression; concomitantly, Rhodependent termination is increasingly compromised through the following strains: missense mutants of nusA, rho or nusG; $\Delta n u s G ;$ and $\Delta r h o$. Mechanistically, the increased prevalence of R-loops in Rho-compromised strains may reflect either their reduced removal or, perhaps more likely, their increased generation by re-annealing of nascent transcripts to upstream DNA.
Finally, R-loops have been shown to occur in yeast, chicken and mammalian cells from nascent RNAs
that fail to undergo cotranscriptional splicing, polyadenylation or export, leading to replication fork blockage and loss of genome integrity. This is reminiscent of the bacterial situation in which Rloops occur from transcripts that fail to be cotranscriptionally engaged by ribosomes. Furthermore in yeast and human cells, loss of the Sen-1/senataxin helicase is associated with both increased R-loops and defective transcription termination. Thus, cotranscriptional engagement of RNA by different proteins is emerging as a general mechanism for R-loop prevention in prokaryotes and eukaryotes.
2. ArgP regulon and mechanism of ArgO exporter function
a. Earlier work from this laboratory had identified ArgO as an arginine (Arg) exporter in E. coli whose transcription is under the control of a LysR-type transcriptional regulator ArgP such that it is induced by Arg and repressed by Lys. Whereas Arg-mediated activation of argO transcription is effected by RNA polymerase recruitment to the argO promoter, the Lysmediated inactivation of $\arg O$ transcription has been shown to operate at the last stage of promoter clearance, making this the first example of reversible environmental regulation operating at the promoter escape step of bacterial transcription. Dominant gain-offunction mutations in $\arg P\left(\arg P^{d}\right)$ were also identified that confer a phenotype of constitutively elevated argO transcription and abolition of the inactivating effects of Lys supplementation.
In the work reported last year, we had described the identification, through both promoter-lac fusion and electrophoretic mobility shift assay (EMSA) studies, of several additional genes regulated by ArgP, including $d a p B$, gdh A, lysP, lysC, asd, lysA and dapD. All were repressed upon Lys supplementation, and in vitro studies demonstrated that ArgP binds to the corresponding regulatory regions in a Lyssensitive manner (in contrast to the situation with $\arg O$, where ArgP binding was Lysinsensitive). ArgP was also shown to bind to regulatory regions of other genes such as $d n a A$, nrdA, and $\arg T$ but without concomitant effect on their expression in vivo, indicating that ArgP is a non-canonical transcriptional regulator that mediates all Lys-liganded repression in E. coli.

In the current year, we have examined the features of transcriptional cross-regulation in
vivo between ArgP-argO of E. coli (Gramnegative) and their orthologs LysG-lysE of Corynebacterium glutamicum (Gram-positive). In C. glutamicum, LysE is an Arg and Lys exporter that is transcriptionally activated by LysG in presence of Arg, Lys or histidine. Our results indicate that LysG can activate lysElac expression in E. coli (in presence of Lys or histidine), thereby recapitulating, at least qualitatively, the regulation in C. glutamicum itself of lysE by LysG; however, neither ArgP nor LysG could cross-activate lysE-lac or argO$l a c$, respectively. On the other hand, some of the constitutive ArgPd variants such as S94L, P274S, and P108S, were able to crossactivate lysE-lac in E. coli.

Our results therefore demonstrate for the first time that a transcription factor from a Grampositive bacterium is able to engage appropriately with RNA polymerase of a Gramnegative bacterium for recruitment to the former's cognate target site, and that the RNA polymerase is then competent for successful recognition of and transcription initiation from the Gram-positive promoter. Furthermore, substitution of a single amino acid at any one of several sites in ArgP generates variants that have now acquired an additional capability to activate a distantly orthologous target.

Interestingly, in the absence of any co-effector, lysE-lac expression in E. coli was markedly lower when LysG was induced than in the control strain carrying vector alone. This observation suggests that non-liganded LysG represses lysE perhaps by steric inhibition of basal RNAP binding to the promoter, analogous to that classically described for AraC at the araBAD promoter in E. coli.

In EMSA experiments, the ArgPd proteins differed from native ArgP in their binding to argO which could be attributed to differences in DNA bending induced by these proteins (less bending with ArgP ${ }^{\mathrm{d}}$. At lysE on the other hand, the $A r g P^{d}$ proteins exhibited higher binding affinity than did native ArgP. We believe that the differences observed in binding in vitro may be causally related to the differences in regulation observed in vivo.
b. To understand the mechanism of Arg and canavanine export through ArgO, we had earlier reported the results of mutagenesis studies of ArgO indentifying amino acid residues that are
critical for ArgO function. The amino acid substitutions G20C, Q22R, V118E, D128Y, S156F and F160S, individually produced ArgO variants with impaired biological activity, but were produced at levels comparable to wild type ArgO. The G20C and Q22R substitutions are located in the putative first transmembrane segment, V118E and D128Y substitutions in the fourth and S156F and F160S substitutions in the fifth transmembrane (TM) segment. The above-mentioned substitutions alter residues that are conserved in ArgO orthologs. To test whether the loss of ArgO activity in these variants might occur due to alterations in normally occurring inter/intrahelical interactions we have searched for second site suppressor mutations that suppress the phenotype of impaired ArgO function associated with the above-mentioned primary mutations. We have obtained three independent second site suppressors of three primary ArgO mutants bearing the amino acid substitutions V118E, S156F and F160S. The suppressor mutations obtained herein are taken as a diagnostic for the existence of putative functional interhelical interactions occurring between TM1-TM5, TM2-TM4 and TM2-TM5. In this regard, we are currently employing alternate methods to obtain an independent line of evidence regarding the existence of interhelical interactions in ArgO. In addition, we had earlier performed an analysis of the topological disposition of ArgO in the inner membrane of E. coli using the alkaline phosphatase gene fusion technology, and our studies have suggested that both the N and C termini of ArgO are localized to the periplasm, and that the amino acid residues critical for ArgO activity identified herein are located in the transmembrane segments of ArgO. To obtain an independent correlate of the topology of ArgO we have initiated cysteine accessibility studies on ArgO. For this purpose we have generated an ArgO variant lacking cysteine residues (Cysless-ArgO; $\mathrm{ArgO}_{\text {cyl }}$) that retains biological ArgO activity and is expressed at levels comparable to ArgO. In the backbone of $\mathrm{ArgO}_{\text {cyL }}$ we have obtained variants each bearing a single cysteine residue located at different positions in ArgO, retaining functional ArgO activity and near normal expression levels. Cysteine accessibility studies with the sulfhydryl reagent malPEG are being performed.
c. In E. coli, ArgO represents the only example of a solute exporter involved in mediating export of a basic amino acid, Arg. Furthermore, so far there is no evidence which suggests that ArgO can mediate export of Lys, a feature that its ortholog LysE from C. glutamicum possesses. In order to identify novel genes whose products may promote export of Arg or Lys we have isolated plasmid clones from a genomic library cloned on a medium copy number plasmid, whose presence suppresses the canavanine sensitive ($\mathrm{Can}^{\mathrm{s}}$) phenotype of a strain lacking ArgO. Our studies have shown that canavanine resistance is mediated by the presence in the plasmid inserts of a novel ORF $y b j E$, predicted to encode an inner membrane protein. Elimination of YbjE modestly exacerbated the $\mathrm{Can}^{\mathrm{s}}$ phenotype of an argO null mutant but its deficiency on its own does not alter the Can ${ }^{\text {s }}$ phenotype of a wild type parent. On the other hand, growth of a ybjE but not an argO null mutant was rendered hypersensitive to the toxic analogue of Lys, thialysine. Furthermore, the $y b j E$ mutant was impaired for growth in media containing lysyl but not arginyl dipeptides. These studies suggest that YbjE mediates export of Lys. It is speculated that Lys export mediated by YbjE may interfere in uptake of Canavanine by the Arg permease thus mediating an apparent enhancement in canavanine resistance phenotype due to increased $y b j E$ gene dosage. $y b j E$ has been renamed as lysO and currently we are examining its regulation and properties of Lys export mediated by LysO.

3. Potassium toxicity of E. coli mutants

The origins of the project lie in our observation that an E. coli strain doubly defective for thioredoxin 1 and thioredoxin reductase ($t r x A$ or $t r x B$ respectively) and the nucleoid protein H-NS is growth inhibited by external concentrations ($\geq 40 \mathrm{mM}$) of the essential cellular cation K^{+}. To understand the physiological defect that renders the TH (trxA hns; trxB hns) strain K^{+}sensitive, previously we have reported that the K^{+}sensitive phenotype of the TH strain occurs because of the presence of elevated cytoplasmic ppGpp level contributed by the resident spoT1 allele and is dependent on activity of the stationary phase sigma factor RpoS. Our genetic studies have also shown that the trx mutations may lead to reduced levels of non-coding RNA oxyS by altering the redox state of the OxyR protein. Accordingly oxyS hns or oxyR hns mutants
are rendered K^{+}sensitive. We have also reported results of extensive suppressor studies on the TH strain and have isolated mutations in rpoS, yajC, cspC, acp, fabF, glpR, ycgO, ahpC that suppress the K^{+}sensitivity of the TH strain. Furthermore, we have found that the presence of the tet A gene of the plasmid pBR322 and the oxyR2, spoT+ alleles also exert suppressive effects. In this year, we have further derived genetic interrelationships between the various suppressor mutations and found that one category of suppressor mutations (acp, $g / p R$, yajC and spo T^{+}) exerted their suppressive effects by mediating a reduction in cellular ppGpp levels. On the other hand, mutations in cspC (and rpoS) impaired the levels of RpoS without affecting cellular ppGpp levels. Mutations in $y c g O$, fabF and the presence of pBR322 exerted their suppressive effects in an RpoS and ppGpp independent manner. Estimates of K^{+}content in the TH strain showed that the trx hns mutations contributed additively to a 3 fold increase in cellular K^{+}content in a high extracellular K^{+}environment compared to the parental strain. Furthermore, the K^{+}sensitivity caused by the trx hns mutations persisted in strains lacking known K^{+}uptake systems. We have utilized magnitudes of expression of a reporter of cellular K^{+}content, that is a kdp-lac fusion, as an indirect gauge of suppressor action on cellular K^{+} levels, and have found that in general the suppressor mutations may afford protection against the lethal build up of cellular K^{+}in the TH strain by directly or indirectly mediating reduction in cellular K^{+}levels. Our studies indicate that the trx (oxyS), spoT1 and the hns mutations may collectively unveil a novel cryptic RpoS dependent K+ uptake pathway incipient in media of high extracellular K^{+}.
In E. coli the phosphotransferase system (PTS) constitutes a transport system for uptake of carbohydrates wherein transport of the incoming sugar is coupled to its phosphorylation. E coli possess a paralogous PTS comprising the proteins PtsP, PtsO and PtsN with PEP dependent phosphotransfer occurring from PtsP to PtsN via PtsO. Previously we have reported that the K^{+} sensitivity of the TH strain is suppressed by mutations in pts P and ptsO and occurs without alterations in cellular ppGpp and RpoS levels. Suppression by the pts P mutation requires the presence of $p t s N$ that encodes Ell ${ }^{\mathrm{Ntr}}$, implicating a role for dephospho-PtsN in mediating suppression. In this year, we found that the pts N mutant consistent with reports in literature was K^{+}sensitive and like the TH strain displayed SpoT1 dependence. The K ${ }^{+}$sensitive phenotype of a ptsN
mutant was suppressed by the tet A gene, and by mutations in $y c g O, f a b F$, yajC and glpR but not by removal of RpoS (or other suppressor mutations like cspC or oxyR2 that reduce RpoS levels). We found a 2-3 fold increase in cellular K^{+}content in the pts N mutant compared to the parent strain, and suppression of the K^{+}sensitivity of the ptsN mutant by the above-mentioned suppressor mutants was associated with altered (elevated) expression of a kdp-lac fusion, suggesting that similar to that seen for the TH strain in general the suppressor mutations may protect a ptsN mutant from the lethal build-up of cytoplasmic K^{+}by mediating its reduction. Our studies suggest that the physiological defects in the trx hns and the pts N mutants may represent two types of perturbations acting in mechanistically distinct ways on a single K^{+}translocating protein, to unfetter its activity. Currently we are testing the effects of the various suppressors of the K^{+} sensitivity of TH strain and the ptsN mutant on cellular K^{+}levels.

4. Role of thil in E. coli osmoadaptation

Bacteria possess genetic determinants that enable them to adapt to a variety of abiotic stresses, thus endowing them with abilities to inhabit a vast range of ecological niches. In this regard, the ability to adapt to changes in the osmolarity of the external environment is one that is important for the growth and survival of bacteria, and for this purpose they bear mechanisms that allow for their adaptation to environments of varying osmolarity. In a study aimed at identifying additional gene products involved in the process of osmoregulation we employed a transposon mutagenesis approach and obtained E. coli mutants that were rendered osmosensitive for growth in media of high osmolarity. In some mutants transposon insertions causal to the osmosensitive phenotype were obtained in genes whose products were hitherto not known to participate in bacterial osmoregulatory processes. Amongst them some mutants bore transposon insertions in thil that encodes a bifunctional enzyme participating in thiamine biosynthesis at the step of formation of the thiazole moiety and in addition is responsible for the 4-thiouridine ($s^{4} \mathrm{U}$), modification in tRNA. In order to understand the physiological basis for the osmosensitive $\left(\mathrm{O}^{s}\right)$ phenotype associated with the thil null mutants, we have obtained multiple lines of evidence which suggest that the $\mathrm{O}^{\text {s }}$ phenotype of a thil mutant is not related to its role in thiamine biosynthesis. First, the O^{s} phenotype
persists in presence of exogenous thiamine and mutations in genes encoding other components of the thiamine biosynthesis pathway do not yield a similar phenotype. Second, consistent with recent reports in literature we find that heterologous production of a polypeptide containing the last 106 amino acids comprising the rhodanase domain of Thil rescues the thiamine auxotrophy of a thil mutant but does not alter its O^{s} phenotype. On the other hand, heterologous production of the Thil variants Thil ${ }_{\text {D189А }}$ and Thil Kз21м bearing amino acid substitutions in residues critical for the generation of $s^{4} U$ modification in tRNA, render a thil mutant prototrophic for thiamine but do not alter its $\mathrm{O}^{\text {s }}$ phenotype. These studies suggest that of the two functions of Thil, its role in generating the $s^{4} U$ in tRNA is the one that is required for osmoadaptation.

In a parallel study we have isolated a collection of spontaneous mutants that bear extragenic suppressor mutations that suppress the $\mathrm{O}^{\text {s }}$ phenotype of a thil mutant. We have located, by performing whole genome sequencing of two suppressor strains, using the $\mathrm{ABI} \mathrm{SOLiD}^{\text {TM }} 3$ plus platform, the genetic lesions that render the suppressor strains osmotolerant $\left(\mathrm{O}^{\top}\right)$. Comparative analyses allowed for the detection of two distinct base alterations in the genome sequences of the two suppressor strains that were causal to their O^{\top} phenotypes. Both strains bore base transversions located in the coding and in the 52 UTR of the pnp, the gene encoding the enzyme polynucleotide phosphorylase, that is a component of the mRNA degradosome complex. Further genetic studies showed that the two lesions in the pnp locus of the suppressor strains were recessive and that a defined knockout allele of pnp also suppressed the osmosensitivity of a thil null mutant. The endoribonuclease RNaseE and the helicase RhlB are other two components of the mRNA degradosome ensemble and thil mutants lacking RNaseE (Rne) or RhIB also displayed O^{\top} phenotypes. To explain why these mutations suppress the O^{S} phenotype of a thil mutant strain, we are testing for the possibility that in the thil mutant elimination of Pnp (or Rne/RhIB) leads to stabilization of an mRN(s) and the elevated levels of the cognate protein(s) mediate osmotolerance. Since the O^{s} phenotype of the thil mutant correlates with a loss of $s^{4} U$ generating capacity of Thil, the possibility that its suppression by mutations in the components of the mRNA degradosome may occur by unmasking of a cryptic $s^{4} U$ generation pathway in the suppressor mutant backgrounds is also being tested.

5. (p)ppGpp/DksA regulated functions in E. coli

In work reported last year, a synthetic growth defect arising from the absence of ribosome rescue/ protein tagging (trans-translation machinery) in strains lacking ppGpp (ppGppº) was genetically characterized. Genetic evidence suggested that the speed of RNA polymerase could be an important contributor to the phenotype.
In the current year, we looked at the contribution of the different steps in the process of ribosome rescue/protein tagging to the synthetic lethal phenotype seen in the absence of ppGpp by using specific mutant ssrA alleles. We tested the following plasmid borne ssrA alleles for their ability to rescue synthetic lethality (i) wild-type $s s r A$, that is, $s s r A^{+}$(ii) an allele which rescues ribosomes but does not add the degradation tag to the polypeptide chain ($s s r A^{0}$); (iii) an allele that rescues ribosomes but adds a defective tag (resistant to the protease machinery) to the polypeptide chain (ssrA-DD) and (iv) a base pair alteration that fails to charge $\operatorname{ssr} A$ with alanine leading to the absence of ribosome rescue and addition of degradation tag ($s s r A-U G$). We find that the $s s A^{0}$ allele is capable of suppressing the synthetic lethality almost at par with that of wild-type ssrA while ssrA-DD and ssrAUG do not confer suppression. The results indicate that facilitation of the release of stalled ribosomes from the mRNA is important for the growth of ppGpp ${ }^{0}$ strain. The ssrA-DD allele has been shown to cause the accumulation of protein in vivo due to the addition of protease resistant tag to proteins; however the kinetics of ribosome release by this allele has not been addressed. If ribosome release is unaffected in the ssrA-DD allele then the results indicate that accumulation of protease resistant peptides could confer growth defect in the ppGpp ${ }^{0}$ strain. It has been reported that the transtranslation machinery is also involved in the degradation of the released mRNA. The ssrA alleles described above have not been characterized for their role in mRNA degradation. The role of impaired mRNA degradation in the synthetic growth defect will be studied.

Given that transcription is coupled to translation in bacteria, recent reports show that the rate of transcription is matched to the rate of translation and that slowing down translation rate results in a matched decrease in rate of transcription elongation. We looked at the effect of increasing concentrations of chloramphenicol (an antibiotic known to decrease translation rate) on the synthetic growth defect of the ppGpp ${ }^{0}$ ssrA.:"cat
strain. We clearly see a positive correlation between suppression of growth defect and concentration of chloramphenicol in the growth media, providing evidence for an association between translation rate and suppression of growth defect.

The role of protein factor DksA that interacts with RNAP through its secondary channel, and shown to work synergistically with ppGpp at a number of promoters, was studied with respect to the synthetic growth phenotype of the ppGpp^{0} ssrA mutant. We find that deletion of $d k s A$ does not confer synthetic growth defect as seen for the ppGpp ${ }^{0}$ strain. On the other hand, the overexpression of DksA, but not a mutant version with substitutions in conserved amino acids thought to be important for modulation of RNAP function can suppress the growth defect.
A spontaneous chromosomal mutation that conferred suppression of the synthetic growth defect was obtained during the course of this study. To identify the mutation(s) responsible for suppression, whole genome sequencing of the mutant strain was carried out and the output compared to the sequence of wild type strain MG1655 deposited at Genbank. Twelve SNPs and one indel were identified. One of the SNP was in the rpoB gene, encoding for the beta-subunit of RNAP, where mutations that suppress phenotypes of ppGpp ${ }^{0}$ strain have been reported. The mutation identified by us, G401A, has not been previously reported, and was shown to be necessary and sufficient to suppress the synthetic growth defect in the ppGpp ${ }^{0}$ ssrA double mutant.
6. Genetic analysis of transketolase deficient E. coli strain

In work reported previously, isolation and genetic analyses of mutations that suppress growth defect of $t k t A t k t B$ double mutant of E.coli in rich medium was described. The study indicated that the following pathways could contribute to the suppression of the growth defect, (i) increased expression of glycerol-3-phosphate kinase (GlpK) in the presence of glycerol-3-phosphate dehydrogenase (GlpD); (ii) decreased synthesis of ribose-5-phosphate through the inactivation of the ribo/deoxyribonucleoside salvage pathway by the deoB or deoD mutation (iii) increase in NADPH levels through increased levels of the proton translocating pyridine transhydrogenase PntA and PntB. The genetic studies also revealed a surprising link between cellular ribose-5-phoshate
pool and expression of the glpFKX genes when studied with the aid of a lacZprotein fusion to the operon's regulatory region. The molecular aspects of the regulation were further studied and are reported below.

The lacZ reporter fusion studied revealed that, (i) expression of the operon is about 10-fold lower in the $t k t A$ mutant compared to a wild type strain; (ii) deoB (encoding phosphopentomutase) deletion or a glpR (encoding glycrol-3-phosphate repressor) deletion in the transketolase mutant (tktA) restores expression close to levels seen in a wild type strain; (iii) ribose supplementation during growth lowers glp operon expression in the tkt A deo B double mutant but not in the tktA glpR double mutant to that seen in the $t k t A$ parent strain. Together the results suggested that ribose-5-phosphate can modulate $g / p F K X$ expression in the transketolase mutant through GlpR.

We conducted experiments to test if the effect of ribose-5-phosphate on GlpR is direct, that is, it binds to the protein and modulates its DNA-binding activity, or an indirect one wherein cellular GlpR levels are altered through a change in its expression. The idea of direct effect was tested by carrying out EMSA experiments while the indirect effect was tested by monitoring intracellular GlpR levels using a C-terminal HA tagged functional construct of GlpR on the chromosome. The results of the western blotting experiment showed (Figure 4) no significant difference in the intracellular level of GlpR in the transketolase mutant with or without the $d e o B$ mutation as compared to the wild type strain.

The result of the EMSA experiment, shown in Figure 5 , supports the idea of direct interaction of ribose-5-phosphate with GlpR and the modulation of its repressor function. The GlpR protein was tagged with His-6x at the N-terminal and cloned in pHYD3025 a derivative of pET21b. The His6-GlpR construct was shown to be functional in vivo and then purified using BL21-DE3 strain and Ni-NTA affinity purification protocol. The results of the EMSA experiment show that glycerol-3-P can destabilize the GlpR-DNA complex as previously reported while ribose-5-P has no effect on the complex. However, from the EMSA experiment it can also be seen that the ability of Glycerol-3-P to destabilize the GlpR-DNA complex is severely compromised in the presence of Ribose-5-P.

Figure 4. Whole cell lysate prepared from equal number of log phase cells was subjected to SDS-PAGE, the proteins transferred to PVDF membrane following standard procedures and probed using anti-HA antibody. Genotype of the strains used for preparation of whole cell lysate is as follows, Lanes: 1. WT; 2. trxC-HA; 3. glpR-HA; 4. tktA glpR-HA; 5. tktA deoB glpR-HA.

Figure 5. A 280 bp DNA fragment carrying the operators and promoter of the glpFKX operon was PCR amplified, end labeled with P^{32} and used as probe. 50 nM of purified His6-GlpR protein was used to carry out an EMSA experiment in 6% polyacrlamide gel with 15% glycerol. Lane 1, Free probe; Lane 2, Probe +5 mM Rib-5-P; Lane 3, Probe +50 nM GlpR; Lane 4, Probe +50 nM GlpR +5 mM Gly-3-P; Lane 5, Probe +50 nM GlpR +5 mM Rib-5-P; Lane 6, Probe +50 nM GlpR + 10 mM Rib-5-P; Lane 7, Probe +50 nM GlpR +20 mM Rib-5-P; Lane 8, Probe +50 nM GlpR +5 mM Gly-3-P +5 mM Rib-5-P; Lane 9, Probe +50 nM GlpR +5 mM Gly-3-P + 10 mM Rib-5-P; Lane 10, Probe +50 nM GlpR +5 mM Gly-3-P + 20mM Rib-5P; Lane 11, Probe +50 nM GlpR +2.5 mM Gly-3-P; Lane 12, Probe +50 nM GlpR +2.5 mM Gly-3-P + 5 mM Rib-5-P; Lane 13, Probe +50 nM GlpR +2.5 mM Gly-3-P + 10mM Rib-5-P.

Glycerol-3-P mediated alleviation of transcriptional repression by GlpR in vivo is fairly well documented and our studies have introduced a new player in this regulation, namely, ribose-5-P, and its role in the regulation of the glp regulon in vivo is being investigated.

Publications

1. Anupama K, Leela JK and Gowrishankar J (2011). Two pathways for RNAse E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rhodependent transcription termination. Molecular Microbiology 82: 1330-1348.
2. Marbaniang CN and Gowrishankar J (2011). Role of ArgP (IciA) in lysine-mediated repression in Escherichia coli. Journal of Bacteriology 193: 5985-5996.
3. Saxena S and Gowrishankar J (2011). Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins. Journal of Bacteriology 193: 3832-3841.
4. Saxena S and Gowrishankar J (2011). Compromised factor-dependent transcription termination in a nusA mutant of Escherichia coli: Spectrum of termination efficiencies
generated by perturbations of Rho, NusG, NusA, and H-NS family proteins. Journal of Bacteriology 193: 3842-3850.

Other publications

1. Gowrishankar J (2011). Why scientists are missing (Letter). Down to Earth (1 May 2011), Pg. 6.
2. Gowrishankar J (2011). Funding of investigatorinitiated research projects in India: The case for moving from a proposal-based to a
performance-based evaluation process. Current Science 101: 823.
3. Gowrishankar J. What should our policy be for appointing non-Indian citizens as heads of public institutions? Current Science (In press).
Patents
4. Gowrishankar J and Nandineni MR. A microbial process for arginine production. Japanese Patent 4836440, issued on 7.10.2011.

LABORATORY OF COMPUTATIONAL BIOLOGY
 Computational Studies on Protein Structure, Function and Interactions

Principal Investigator
PhD Students
HA Nagarajaram
Vishal Acharya
Anupam Sinha
H Rachita
Manjari
Suryanarayana Seera

Staff Scientist
Senior Research Fellow (Till Oct. 2011)
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow (Since Jan. 2012)

Objectives

Studies on protein-protein interaction networks (PPIN):

1. Analysis of Human-Virus PPI (HU-Vir PPI) network;
2. Studies on spatio-temporal dynamics of human PPIN;
3. Structural and functional characterization of hubs in human PPIN.

Summary of work done until the beginning of this reporting year (upto March 31, 2011)

1. Developed a new SVM-based method called Hansa (http://hansa.cdfd.org.in:8080/) for prediction of disease causing nsSNPs. This method uses a novel set of discriminatory features that include position specific probability scores calculated using Dirichlet mixture of prior information as well as Gribskov's approach, predicted solvent accessibility and secondary structural features, BLOSUM62 substitution scores and change in free energy changes associated with both wild-type and mutant amino acid residues. A 10 -fold cross validation study revealed that Hansa yields a prediction accuracy of 83% (at 0.2 FPR) which is more than 10% as compared to the best available method.
2. We undertook a systematic computational analysis of Human-Virus (Hu-Vir) PPIs with special emphasis on the role of intrinsically disordered proteins (IDPs). It was found that about 60% of human proteins interacting with viral proteins are highly disordered whereas only 25% of viral proteins interacting with human proteins are disordered. In the bipartite network of Hu-Vir PPI, it was observed that human proteins either have degree < 60 or >130. There
was no preference seen for human IDPs to have either high degree or low degree. Functional enrichment analysis revealed that human IDPs interacting with viral proteins are involved in important functions such as DNA or RNA binding, cell cycle regulation and protein synthesis.
3. Comparative studies on tissue-wise PPINs were carried out. We constructured 79 tissuewise networks and investigated various topological properties such as degree, betweenness and clustering coefficient of protein products of housekeeping as well as tissue-specific genes. We found that proteins expressed in specific tissues make fewer connections however, with a few exceptions that make tissue-specific hubs. Furthermore, tissue-specific proteins avoid occurring in shortest paths and possess less interconnected partners. In contrast, widely expressed proteins establish most of the interactions and act as global hubs in various tissues. Some of these observations reconfirmed earlier reports.
4. We examined the relation between degree and the number of splice variants of nodes in human PPI network and found a weak positive correlation between the two. We further extended our studies to decipher the relationships between degree and unstructuredness of the nodes. Contrary to previous reports, only a weak positive linear correlation was found between the degree of gene/node and the average unstucturedness of all its splice variants. Studies were also carried out to examine the relationship between the extent of splice variation and the average unstructuredness of protein products. When the ratio of the unstructured variants to the total number of variants in each splice
variation bin was plotted against the bin size, a significant linear positive correlation was observed.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

Project 1: Analysis of human and virus proteinprotein interaction (Hu-Vir PPI) networks
Bridged Hu-Vir Network (BHVN) was constructed by merging Hu-Vir PPI (bipartite network) with the Hu-PPI data. The BHVN was analyzed using the igraph package in R in order to identify the viral articulation points. Articulation points are the nodes in the network which connect two previously unconnected components. Such viral articulation points actually add to the complexity of human PPI network. We were able to identify 42 proteins acting as articulation points from 12 viruses belonging to ssRNA and dsDNA viruses. Some of these articulation points were found to be conserved among viruses i.e., similar proteins from related viruses form articulation points when mapped on to Hu-PPI network.

Functional annotation of human proteins connected by viral articulation points was carried out using DAVID Bioinformatics database (Huang et al. 2009) with the whole genome used as background for the studies. GO biological processes annotation of human proteins connected to the main network via HIV1 proteins indicated that they are enriched (p-value $<0.05,>3$ proteins per function) in functions like metabolic pathways, stress response, interspecies interaction and response to stimulus.

Project 2: Studies on spatio-temporal dynamics of human PPI networks

We downloaded protein-protein interaction information available from 8 literature curated databases and manually curated and integrated them into one database. After several steps of manual curation, we could get information for 13773 human proteins making 120046 physical interactions from all the 8 databases.
We used RNAseq data available for 10 tissues and 5 cell lines from Wang et al. (2008) and constructed tissue-specific (local) interaction networks. Topological properties of proteins/genes expressed in each tissue were calculated using igraph-a package provided by R (http://www.rproject.org/) and topologically important nodes were identified tissue-wise with cut off of top 20% (the same was also repeated with different cut-off of 5% and 10%). We then identified hubs and non-hubs in each tissue-specific network and studied their gene expression attributes i.e. expression abundance and expression variance which are calculated by taking mean and statistical variance of expression values of the gene across the tissue where it is expressed respectively. When expression abundance and variance of hubs and non-hubs were calculated and plotted (Figure 1), we found that the hubs were generally associated with significantly higher expression abundance and variance than the non-hubs (P value $<2.2 \mathrm{e}-16$) which shows that genes encoding hubs proteins are expressed in more number of copies and are more differentially expressed than non-hubs.

Figure 1. Boxplots showing the expression abundance and variance for hubs and non - hubs (p value $<2.2 \mathrm{e}-16$)

Project 3: Structural and functional characterization of hubs in human PPI network

We examined the relation between degree and the number of splice variants of genes/nodes in human PPIN. We found that the hubs in HPRD PPIN have greater number of splice variants than the non-hubs (Figure 2). This observation was confirmed across multiple PPI databases like IntAct, Reactome etc.

Figure 2. Splice variant count in hubs and non-hubs of the HPRD PPI Network. Hubs are characterized by the presence of large number of isoforms as compared to non-hubs (Wilcoxon ranksum test $\mathrm{P}=5.903 \mathrm{e}-5$).

We further extended our studies to decipher the relationships between degree and unstructuredness of the nodes. We found that hubs had significantly higher proportion of disorderedness when compared to non-hubs.
Studies were also carried out to examine the relationship between the extent of splice variation and the average unstructuredness of protein products. The nodes with top 5% of the splice variant count showed a considerably higher propensity for disorderedness than the rest of the nodes. Similar studies were performed for nodes with top 10\% and 15% of the splice variant count. Again the results obtained showed that genes/nodes with large number of splice variants tend to have high average disorderedness.

We have also analyzed the combined effect of splice variation, domain composition and disorderedness on the degree of the nodes. We mapped domain-domain interaction information onto the HPRD network using the database iPfam. We then calculated the domain-domain interaction degree (DEG_DDI) for each of 1379 nodes. In
essence DEG_DDI represents the number of physical interactions discerned from a database such as HPRD that are further confirmed by domain-domain interaction data. In other words, we identified the degree of nodes due to the presence of interacting domains. We then calculated the difference between the degree (degree difference) discerned from a database (example, HPRD) and the DEG_DDI into three cases of disorderedness of nodes: structured proteins (<10\% of residues in the unstructured region/s), moderately unstructured proteins ($10 \%-30 \%$ of residues in the unstructured region/s), and unstructured proteins (> 30% of residues in the unstructured regions). The nodes with high structural disorderedness showed high degree difference as compared to the nodes with low disorderedness (Figure 3) suggesting that the propensity of a node for large number of interactions arises substantially from its structurally disordered splice variants.

Figure 3. Box plot showing the distinct degree difference distributions (HPRD_DEG - DEG_DDI) in the three categories of nodes A, B and C where category A corresponds to the genes/nodes whose disorderedness is less than 10%, B corresponds to the genes/nodes whose disorderedness lies between $10 \%-30 \%$ and C corresponds to the genes/nodes whose disorderedness is more than 30%. HPRD_DEG is the degree of a node discerned from the HPRD network while DEG_DDI is the degree of the same node counted from the presence of interacting domains. The degree difference distributions in the three categories of nodes are significantly different from each other (Kruskal-Wallis Ranksum Test $\mathrm{P}=0.0002366$).

Future plans and directions

1. Integration and analysis of human nsSNP data on protein-protein interaction networks.
2. Further analysis of viral-human bridge PPI network.
3. Studies on tissue-wise PPI networks integrated with drug-protein interaction data.
4. Further studies on structural and functional characterization of hubs in HPPIN.

Publications

1. Kumar P, Chaitanya PS and Nagarajaram HA (2011). PSSRdb: A relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes. Nucleic Acids Research 39: D601-D605.
2. Mohammad TA and Nagarajaram HA (2011). A hierarchical approach to protein fold prediction. Journal of Integrative Bioinformatics 8: 185.
3. Shamim MT and Nagarajaram HA (2011). SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids. Journal of Bioinformatics and Computational Biology 9: 489-502.
4. Acharya V and Nagarajaram HA (2012). Hansa: An automated method for discriminating
disease and neutral human nsSNPs. Human Mutation 33: 332-327.
5. Bashyam MD, Purushotham G, Chaudhary AK, Rao KM, Acharya V, Mohammad TA, Nagarajaram HA, Hariram V and Narasimhan C (2012). A low prevalence of MYH7/MYBPC3 mutations among familial hypertrophic cardiomyopathy patients in India. Molecular and Cellular Biochemistry 360: 373-382.
6. Bashyam MD, Chaudhary AK, Reddy EC, Reddy V, Acharya V, Nagarajaram HA, Devi ARR, Bashyam L, Dalal AB, Gupta N, Kabra M, Agarwal M, Phadke SR, Tainwala R, Kumar R and Hariharan SV. A founder ectodysplasin A receptor (EDAR) mutation results in a high frequency of the autosomal recessive form of hypohidrotic ectodermal dysplasia in India. British Journal of Dermatology (In press).
7. Kumar P and Nagarajaram HA. A study on mutational dynamics of simple sequence repeats in relation to mismatch repair system in prokaryotic genomes. Journal of Molecular Evolution (In press).

LABORATORY OF MOLECULAR CELL BIOLOGY

Signal Transduction Pathways in Macrophages and Host-Pathogen Interaction in Tuberculosis

\author{

Principal Investigator	Sangita Mukhopadhyay
Ph D Students	Khalid Hussain Bhat
	G Sreejit
	Nazia Parveen
	Atul Udgata
	Arghya Das
	Gourango Pradhan
	Parul Singh
	Vishwanath Jha
	R Nagender Rao
	Niteen Pathak
	Philip Abraham
	Asma Ahmed
	Sheikh Ghoussunnissa
	C Chaitanya Krishna
	K Rajavarman
	Seyed E Hasnain
Collaborators	Pawan Sharma
	V Valluri and S Aparna

}

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Feb. 2012)
Scientist B
Senior Technical Officer
DBT Research Associate I
DBT Research Associate I (Since Jul. 2011)
Project Assistant (Till Oct. 2011)
Project Assistant (Till Jan. 2012)
Project Assistant (Till Jun. 2011)
IIT, Delhi
ICGEB, New Delhi
Mahavir Hospital, Hyderabad
BPRC, Hyderabad

Objectives

1. Signal transduction pathways in macrophages regulating its innate-effector functions;
2. Studying how various candidate proteins of Mycobacterium tuberculosis interfere with macrophage signaling cascades to modulate host's protective responses against the bacilli.
Summary of work done until the beginning of this reporting year (Upto March 31, 2011)
In our previous studies, we found that the PPE protein Rv1168c plays an important role in the activation of HIV-1 LTR in monocytes/macrophages. LTR activation by Rv1168c was demonstrated by transfection experiments in which the LTR directed the expression of the bacterial enzyme chloramphenicol acetyltransferase (CAT). When THP-1 cells were transfected with the HIV-LTR plasmid construct and treated with various concentrations of the recombinant Rv1168c (rRv1168c) protein (control group) and the LTR activation was determined by measuring CAT expression by ELISA after 36 hours of transfection, it could be observed that rRv1168c potently stimulated CAT expression in THP-1 cells. The

Rv1168c enhanced LTR activity in dose-dependent manner and maximum activity was observed by 3 $\mu \mathrm{g} / \mathrm{ml}$ of Rv1168c protein. Since the transfection efficiency in THP-1 cells was low (about 30\%), we also used BF-24 cells (THP-1 cells containing a stably integrated HIV-1 LTR promoter sequence driving CAT reporter gene) and a dose-dependent increase in CAT expression was observed with increasing concentrations of rRv1168c in BF-24 cells also. The increased HIV-1 LTR activity was not due to LPS contamination in the recombinant protein preparation and was specific to Rv1168c protein. HIV-1 LTR-driven CAT gene expression was found to be increased by Rv1168c in PMAdifferentiated THP-1 macrophages also as well as in human monocyte-derived macrophages. We observed that the Rv1168c protein is a potent transactivator of HIV-1 LTR and can substitute for HIV-1 Tat.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

1) Understanding the role of a M. tuberculosis PPE protein Rv1168c in the activation of HIV-1 long terminal repeat (HIV-1 LTR)

Rv1168c-mediated activation of LTR is dependent on NF-kB transcription factors

As NF-кB is one of the most important transcription factors responsible for HIV-1 LTR transcription, we first examined whether NF-кB is involved in the Rv1168c-mediated activation of HIV-1 LTR. We found that Rv1168c increased p50 and p65 NF-кB levels in monocyte/macrophages. Further, it was observed that Rv1168c-mediated trans-activation of HIV-1 LTR in monocyte/macrophages cells was strongly inhibited by pyrrolidine dithiocarbamate [(PDTC), a known inhibitor of NF-кB], suggesting a possible role of $N F-\kappa B$ in the activation of LTR by Rv1168c. To further underscore the role of NF-кB in the Rv1168c-mediated activation of HIV-1 LTR, THP-1 cells were transfected with a HIV-1 LTR construct where the NF-кB binding sites were mutated (pDkB -HIV-CAT) and followed by treatment with rRv1168c ($0.3 \mu \mathrm{~g} / \mathrm{ml}$ and $3 \mu \mathrm{~g} / \mathrm{ml}$) for 36 hours. The results indicate that expression of the CAT reporter gene is significantly down-regulated in the group transfected with pDkB-HIV-CAT as compared to the group transfected with wild-type HIV-1 LTR. All these results confirm a definite role of $N F-\kappa B$ in the Rv1168c-mediated activation of HIV-1 LTR promoter.

We observed that Rv1168c also increased production of TNF- α in BF-24 cells in a concentration-dependent manner. Interestingly, the recombinant Rv1168c (rRv1168c) was found to activate HIV-1 LTR even in the presence of the specific TNF- α inhibitor indicating that rRv1168c can still activate HIV-1 LTR even when TNF- α production by Rv1168c is inhibited.

Rv1168c interacts with TLR2 to induce NF-кBdependent activation of HIV-1 LTR

Various studies have indicated that TLR2 is the most predominant receptor recognized by the M. tuberculosis components and plays an important role to modulate macrophage signaling cascades during M. tuberculosis infection. TLR2-specific signaling is found to be essential in M. tuberculosis-mediated activation of HIV-1 LTR both in vitro and in vivo as TLR2-deficient transgenic mice harboring HIV-1 pro-viral genome fail to transcribe genes under the control of the LTR promoter. Since Rv1168c could be detected in the insoluble cell wall fraction indicating the fact that Rv1168c is probably surface exposed on M. tuberculosis and since rRv1168c protein was found to bind strongly with THP-1 cells, we next investigated whether Rv1168c specifically
recognized the TLR2 receptors and targeted the TLR2-induced signaling to activate HIV-1 LTR. When a pull-down assay was carried out using whole cell extracts prepared from HEK293 cells (which do not express TLRs and therefore can be used to identify ligands for TLRs by over-expressing particular TLRs in these cells) transfected with either pcDNA3.1 or full-length TLR2 or full-length TLR4 over-expression plasmid and incubated with rRv1168c protein immobilized on TALON beads followed by immunoblotting using anti-TLR2 or antiTLR4 mAb, only TLR2 was detectable in the eluate (Figure 1A). No bands were visible in the control group transfected with pcDNA3.1 or TLR4 or in the group containing only beads (Figure 1A). These observations suggest that Rv1168c interacts specifically with the TLR2 receptors. Again, antiTLR2 mAb but not anti-TLR4 mAb or isotypematched (IgG2a) control Ab was able to inhibit binding of Rv1168c on THP-1 macrophages (Figure 1B). These observations further confirm that Rv1168c specifically interacts with the TLR2 receptors.
To investigate whether the interaction of Rv1168c with TLR2 is necessary for increased binding of NF-кB to LTR DNA and thereby resulting in up-regulation of LTR promoter activity, we next treated BF-24 cells with a TLR2 neutralizing mAb to block binding of Rv1168c with TLR2 and measured both the NF-кB DNA-binding activity by EMSA and HIV-1 LTR activity by estimating CAT expression levels by ELISA. The results shown in Figures. 1C and 1D indicate that blocking the binding of Rv1168c with TLR2 by pre-treating cells with anti-TLR2 mAb results in poorer NF-кB DNAbinding activity (Figure 1C) with concomitant inhibition of transcription of the CAT reporter gene from the LTR promoter (Figure 1D). Consistent with our previous observations with neutralizing antibody (Figure 1C and 1D), we found that silencing of TLR2 expression on BF-24 cell surface resulted in strong diminishment of nuclear NF-кB activity when treated with rRv1168c (Figure 1E). However, in the negative control siRNA-transfected BF-24 cells significant amount of DNA-binding activity was detected (Figure 1E). Expectedly, the levels of NFκB DNA-binding activities were well correlated with the LTR-driven CAT gene expression where the CAT expression level in the BF-24 cells transfected with TLR2-specific siRNA were almost reduced to the control levels (Figure 1F). On the other hand, BF24 cells with negative control siRNA had no significant deviation in the CAT expression levels when stimulated with rRv1168c (Figure 1F). These
results suggest that Rv1168c mainly targets the TLR2 to induce NF-kB-dependent activation of HIV1 LTR in BF-24 cells.
Rv1168c activates HIV-1 LTR and requires TLR2-signaling when presented as part of the whole Mycobacterium
To check whether Rv1168c could also increase LTR activity when presented in the context of whole bacillus, we infected BF-24 cells with M.
smegmatis (the M. smegmatis bacillus is known to be a non-pathogenic mycobacterium and its genome does not have most of the PE/PPE genes including Rv1168) over-expressing Rv1168c (M. smeg-Rv1168c) and HIV-1 LTR activity was measured at 36 hours post-infection. The control group was infected with M. smegmatis harboring the backbone vector alone (M. smeg-pVV16). Infection of BF-24 cells with M. smeg-Rv1168c as compared to the M. smeg-pVV16 resulted in

Figure 1. TLR2 plays an important role in the Rv1168c-mediated activation of NF-kB and HIV-1 LTR in BF-24 cells. A. Lysates from HEK293 cells transfected with either the TLR2 over-expression plasmid or the TLR4 over-expression plasmid or the backbone vector (pcDNA3.1) were incubated with rRv1168c immobilized with TALON resin. The bound protein was eluted and loaded onto a denaturing 10% SDS-PAGE gel and immune blotted with anti-TLR2 Ab or anti-TLR4 Ab. The membrane was then incubated with anti-mouse IgG-HRP conjugate and the blot was visualized by chemiluminescence. B.THP-1 cells were treated with $10 \mu \mathrm{~g} / \mathrm{ml}$ of either anti-TLR2 monoclonal Ab or anti-TLR4 monoclonal Ab or IgG2a isotype control Ab and treated with biotin labeled rRv1168c ($3 \mu \mathrm{~g} / \mathrm{ml}$) followed by incubation with streptavidinFITC. The binding of rRv1168c was measured using FACS Vantage flow cytometer. C. In another experiment, BF-24 cells were either left untreated or pre-treated with $10 \mu \mathrm{~g} / \mathrm{ml}$ of either anti-TLR2 monoclonal Ab or lgG2a isotype control Ab for 1 hour and then incubated with $3 \mu \mathrm{~g} / \mathrm{ml}$ of rRv1168c. Cells were harvested either after 1 hour to measure NF-kB induction in the nuclear extracts of various groups by EMSA or D. after 36 hours to measure CAT gene expression in whole cell extracts by ELISA. The results are shown as the mean \pm SD of three independent experiments. E. BF-24 cells were transfected with either TLR2-specific siRNA or negative control scrambled plasmid and after 24 hours of transfection, the cells were either left untreated or treated with $3 \mu \mathrm{~g} / \mathrm{ml}$ of rRv 1168 c . Protein extracts were prepared 1 hour post-treatment and EMSA was performed. Results shown are representative of three independent experiments. F. In another experiment, BF-24 cells were either treated with medium or transfected with either TLR2-specific siRNA or negative control scrambled plasmid and after 24 hours of transfection, the cells were either left untreated or treated with $0.3 \mu \mathrm{~g} / \mathrm{ml}$ and $3 \mu \mathrm{~g} / \mathrm{ml}$ of rRv1168c for 36 hours. Whole cell extracts were prepared to measure CAT expression level by ELISA. The results are shown as the mean \pm SD of at least three independent experiments.
significant enhancement of LTR-driven CAT expression. Also, when Rv1168c was presented in the context of whole bacterium (M. smeg-Rv1168c), TLR2 receptor was found to be required to activate NF-kB and HIV-1 LTR indicating that Rv1168c interacts with TLR2 when presented in the context of the whole mycobacterium and triggers the downstream NF-кB signaling events that drive increased transcription from the HIV-1 LTR promoter. We demonstrated that the TLR2 leucine rich repeat (LRR) 15~20 domain was important in triggering the downstream signaling events leading to activation of NF-кB by Rv1168c in monocytes/ macrophages.

Deletion of the N-terminal domain of Rv1168c failed to trans-activate HIV-1 LTR promoter in BF-24 cells when infected with M. smegmatis over-expressing the deletion mutant
We found that purified truncated Rv1168c protein with an intact N -terminal domain containing 1-173 aa residues (rRv1168caC) was able to sufficiently activate HIV-1 LTR driven transcription to the extent similar to that of the purified full-length protein. In line with our earlier observations, activation of HIV1 LTR by rRv11684C was strongly impaired when TLR2 expression in BF-24 cells was suppressed by using TLR2-specific siRNA. These experiments clearly indicate that the N -terminal domain of Rv1168c is essential for activation of HIV-1 LTR in $\mathrm{BF}-24$ cells and this requires TLR2. This suggests that the region encompassing amino acids from 1-173 is crucial to activate TLR2-triggered proinflammatory signaling and HIV-1 LTR transactivation. The full length protein, when presented in the context of the whole mycobacterium in M. smegmatis (M. smeg-Rv1168c), was also able to activate HIV-1 LTR. Similarly, the N-terminal region was also able to activate NF-kB and therefore HIV1 LTR-driven CAT gene expression almost similar to the levels observed by the full length protein when presented in the context of the whole mycobacterium in M. smegmatis.
To determine if any role is played by the C-terminal domain, we generated truncated Rv 1168 c with an intact C-terminal fragment containing 175-346 aa residues, over-expressed it in M. smegmatis (M. smeg-Rv11684N), and infected BF-24 cells. We found that the sole C-terminal domain of Rv1168c when presented in the context of the whole bacteria failed to significantly activate NF-kB as compared
to full length Rv1168c or Rv1168 observations were also well correlated with HIV-1 LTR-driven expression of the CAT gene. These data indicate that the N -terminal region of Rv1168c is the functionally active domain and is required for elicitation of the pro-inflammatory signaling pathway and HIV-1 LTR trans-activation.

Future plans

We would like to study in detail the mechanisms involved in the regulation of anti- and proinflammatory signaling downstream of TLR2 by the PE/PPE proteins of M. tuberculosis in macrophages and the detailed roles of the PE/PPE proteins in the trans-activation of HIV-1 LTR.

Publications

1. Das A and Mukhopadhyay S (2011). The evil axis of obesity, inflammation and type-2 diabetes. Endocrine, Metabolic and Immune Disorders - Drug Targets 11: 23-31.
2. Mukhopadhyay S and Balaji KN (2011). The PE and PPE proteins of Mycobacterium tuberculosis. Tuberculosis 91:441-447.
3. Nair S, Pandey AD and Mukhopadhyay S (2011). The PPE18 protein of Mycobacterium tuberculosis inhibits NF-кB/rel-mediated proinflammatory cytokine production by upregulating and phosphorylating SOCS3 protein. Journal of Immunology 186: 54135424.
4. Akhter Y, Ehebauer MT, Mukhopadhyay S and Hasnain SE (2012). The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: Perhaps more? Biochimie 94: 110116.
5. Mukhopadhyay S, Nair S and Ghosh S (2012). Pathogenesis in tuberculosis: Transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiology Reviews 36: 463-485.
6. Bhat KH, Chaitanya CK, Parveen N, Varman R, Ghosh S and Mukhopadhyay S. Proline-Proline-Glutamic Acid (PPE) protein Rv1168c of Mycobacterium tuberculosis augments transcription from HIV-1 Long Terminal Repeat promoter. Journal of Biological Chemistry (In press).

LABORATORY OF STRUCTURAL BIOLOGY Structural and Biochemical Characterization of Some M. tuberculosis Proteins

Principal Investigator	Shekhar C Mande
PhD Students	N Madhav Rao
	Pramod Kumar
	Shubhada Hegde
	Arpita Goswami
	Aditi Sharma
	Swastik Phulera
	Payel Ghosh
	A Sheeba
	Ch Neeraja
	Ashwani Kumar
	Susan Bosco
	Anil Tyagi
Collaborators	Kanury Rao
	Abhijit A Sardesai
	Sanjeev Khosla
	David Sherman

Objectives

1. Identification of important proteins of Mycobacterium tuberculosis for crystallographic and biochemical analysis;
2. Expression and biochemical characterization of the chosen proteins. X-ray structural analysis of the chosen proteins;
3. Develop applications of graph theory to understand genome-wide protein:protein interactions.

Summary of work done until the beginning of this reporting year (upto March 31, 2011)

Three broad categories of proteins from Mycobacterium tuberculosis were chosen for biochemical and structural work. They are:

Staff Scientist (Till Aug. 2011)
Senior Research Fellow (Till May 2011)
Senior Research Fellow (Till Oct. 2011)
Senior Research Fellow (Till Feb. 2012)
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow
Scientist B
Technical Officer I
DBT Post Doctoral Fellow
Project Associate
Project Junior Research Fellow (Till Nov. 2011)
University of Delhi, South Campus
ICGEB, New Delhi
CDFD, Hyderabad
CDFD, Hyderabad SBRI, Seattle

Chaperonins

We had demonstrated earlier that GroEL-1 is capable of binding to DNA without any sequence specificity. The affinity of DNA recognition by GroEL-1 is sufficiently high, in the range of 100200 nM , suggesting that the protein has naturally evolved to bind DNA. This property of GroEL-1 was proposed to be due to its participation in nucleoid formation in M. tuberculosis.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
Project 1: Structural characterization of NrdH Ribonucleotide reduction is an essential biochemical process. M. tuberculosis Ribonucleotide reductases (NrdE-F2) perform this reaction with NrdH serving as the hydrogen donor. NrdH is a Thioredoxin like protein with a

Redox proteins	Thioredoxin and thioredoxin reductase Glutaredoxin	
Heat shock proteins	Chaperonin-60 family (Cpn60.1, Cpn60.2 and Cpn10)	
	Heat shock protein 70 family (Hsp70, Hsp40)	
Other proteins including proteins involved in transcription processes	cAMP receptor protein	
		YefM:YoeB toxin-antitoxin complex

Glutaredoxin like sequence. We demonstrate that this protein can in vitro be reduced by Thioredoxin reductase and also that it can reduce Insulin in vitro (when used as a model substrate). Towards the structural characterization of this protein, we have successfully solved the structure of this protein at 1.67 Å. Also, we have collected high resolution diffraction data at $1 \AA$ A resolution, the refinement of which is in progress.
Since little information is known about the NrdH protein family per se, we have done phylogenetic analysis of NrdH along with Thioredoxins and Glutaredoxins. We believe that NrdH represents a separate class within proteins having a thioredoxin fold. We observe that the sequence motifs present in NrdH are different from those observed in Thioredoxins and Glutaredoxins. Further investigations as to what makes NrdH able to accept electrons from Thioredoxin reductase, while Glutaredoxins are incapable to do so are underway. We hypothesize that the answer to this lies within patterns of residue co-operativity in the three dimensional structure of these proteins and it is the functional interactions within amino acid pairs that define the functional differences among these classes of proteins.

Project 2: Molecular characterization of Chaperonins

To comprehend the role of GroEL-1 in binding to DNA, we carried out comparative studies on M. tuberculosis H37Rv (WT) and M. tuberculosis groEL-1 knockout (KO). Growth curve analysis with the WT, KO and groEL-1 complemented strain (Comp) showed that there was no growth defect shown by the KO in 7H9 media (Figure 1). Gene expression profiling of the KO and WT were done under five stress conditions (Table 1) using Nimblegen arrays. Five biological replicates were taken for each of the stress conditions. All genes
which showed a 2 fold change and were at 99% confidence using the Student's t test were taken as significant differentially expressed genes in KO in comparison to the WT. A large number of genes were found to be differentially expressed in the stationary phase, cold shock and mild cold shock compared to conditions low pH and low aeration. While PE PGRS genes were highly upregulated in pH stress, ribosomal genes showed an increased expression at stationary phase in the KO.

Condition		Number of genes
Cold shock	On ice	398
Mild cold shock	At room temperature	316
Low pH	pH $=5.5$	35
Low aeration	Standing culture at $37^{\circ} \mathrm{C}$	53
Stationary phase	OD 2.2	643

Table 1. Number of genes differentially expressed in the KO vs. the WT under each of the stress conditions.

Project 3: Evidence for enhanced correlated gene expression under conditions of impaired DNA supercoiling

A compendium of large scale gene expression studies was employed to investigate the effects of perturbations in DNA supercoiling on gene regulation. The most interesting outcome was upon the segregation of supercoil impaired and supercoil stable conditions to study the expression correlations calculated in these two categories. A remarkable increase in the number of correlated and inversely correlated gene pairs upon perturbations in DNA supercoiling was apparent, thereby confirming that DNA topology indeed affects transcriptional control (Figure 2). Interestingly,

Figure 1. Growth curve analysis of WT, KO and Comp strain. The KO grew at the same rate as the WT strain.

Figure 2. Expression correlation and gene vicinity. A. Highly correlated gene pairs, and B. Less correlated gene pairs. In the conditions where supercoiling is impaired, co-expressed genes are closely located and anti-correlated genes are located farther apart on the genome. Operonic gene pairs are removed during the analysis in order to avoid bias.
closely located gene pairs on the genome exhibit high correlation whereas genes located far from each other exhibit high inverse correlation upon loss of control on DNA supercoiling. Such a pronounced distance dependence of expression correlation in the supercoiling insensitized conditions suggests that transcription processes might also be affected by DNA supercoiling.

Project 4: Study of DNA binding proteins in E. coli and their role in organization of nucleoid structure

Unlike eukaryotes, some of the basic elements of DNA compaction such as histones are absent in bacteria, and therefore exact molecular mechanisms of bacterial chromosome packaging are still unclear. Among the factors facilitating DNA

Figure 3. In this figure, the outer rings shows the occupancy of DNA binding proteins in normal conditions while inner rings denotes the same for hyper-osmotic stress condition.
condensation, binding of nucleoid associated proteins (NAPs) may play a major role in prokaryotic genome organization. The aim of the study is to identify different sites on the Escherichia coli genome where the NAPs might bind and how their association helps to form a compact nucleoid structure. The complete genome of the E. coliK12 isolate MG1655 was reviewed for DNA-protein binding sites, with the help of 'ChIP-chip' experiments for a normal set of cells and also, after subjecting them to hyperosmotic stress (imposed by high concentrations of sucrose). Comparison of results obtained for different E. coli cultures indicate if-and-how the binding patterns of some NAPs change in course of cellular osmoregulation (Figure 3). The reported trends in binding of NAPs are expected to better reveal the structural organisation and dynamicity of the E. coli nucleoid.

Project 5: Genome-wide prediction of Genetic Synthetic Phenotypes

Genetic perturbation, such as a gene mutation has been a widely used tool to address functional aspects of genes in many model organisms. In certain cases, simultaneous multiple gene perturbations have also been used. For example, two genes whose individual deletion mutants have minimal growth defects, while the double knockout results in a significant growth defect under a given condition. Such double mutants/knock outs are referred to as Genetic Synthetic Phenotypes (GSP). Conventional approaches that have been

Figure 4. Figure shows that genes B and C make a functional pathway and genes D, X and E make another functional pathway parallel to it. Black arrow lines show physical interactions between genes and green lines show GSPs.
used to explore genetic interactions are now being replaced by recent advances in the high-throughput methodologies. Although such high-throughput studies have shown remarkable potential to deal with experimental bottlenecks, it continues to be a daunting task to experimentally map pairwise genetic interactions for a whole genome due to time and expenses. In this study we have predicted genome-wide GSP in S. cerevisiae and E. coli using gold standard network and genomic features. We applied 8 different Machine Learning (ML) approaches out of which 4 are novel for the prediction of genetic interactions. Best 5 ML approaches were considered for the final GSP count. In our knowledge, this is the first computational study for the prediction of genomewide GSP for E.coli. By doing so, we show that our method can be implemented on both Eukaryotes as well as Prokaryotes. We experimentally validated our predicted interactions for 3 cell division genes in E. coli and identified 14 new GSP. We also predicted direct protein interaction linkages using our predicted GSPs. We account better performance in genetic interactions prediction as demonstrated by Matthews Correlation Coefficient, ROC and Precision-Recall curves. Figure 4 shows that genes B and C make a functional pathway and genes D, X and E make another.

Future plans and directions

* Overexpression, purification and crystallization of NrdE and NrdF proteins.
* Analysis of microarray experiments of WT and groEL1 KO strains.
* Analysis of genome-wide correlations of expression.
Publications

1. Arora A, Chandra NR, Das A, Gopal B, Mande SC, Prakash B, Ramachandran R, Sankaranarayanan R, Sekar K, Suguna K, Tyagi AK and Vijayan M (2011). Structural biology of Mycobacterium tuberculosis proteins: The Indian efforts. Tuberculosis 91: 456-468.
2. Hegde S, Klimova E, Mande S, Medvedeva IA, Makeev V and Permina EA (2011). Using the operonic gene pairs for establishing the threshold correlation coefficient of differently expressed genes. Biofizika 56: 1062-1064. [Article in Russian]
3. Jailkhani N, Ravichandran S, Hegde SR, Siddiqui Z, Mande SC and Rao KVS (2011). Delineation of key regulatory elements identifies points of vulnerability in the mitogen-activated signaling network. Genome Research 21: 2067-2081.
4. Kumar CMS and Mande SC (2011). Protein chaperones and non-protein substrates: On
substrate promiscuity of GroEL. Current Science 100: 1646-1653.
5. Hegde SR, Rajasingh H, Das C, Mande SS and Mande SC (2012). Understanding communication signals during Mycobacterial latency through predicted genome-wide protein interactions and boolean modeling. PLoS One 7: e33893.

LABORATORY OF MAMMALIAN GENETICS

Epigenetic Mechanisms Underlying Developmental Pathways

Principal Investigator	Sanjeev Khosla
PhD Students	Divya Tej Sowpati
	Garima Sharma
	Amitava Basu
	Rachana Roshan Dev
	Imtiyaz Yaseen
	Thushara Thamban
Other Members	M Srilalitha
	Vaishnavo Pai
	Bindu Bhargavi
	N Vanitha
Collaborators	Gayatri Ramakrishna
	Shekhar Mande
	Rakesh Mishra
	Vinay K Nandicoori

Project 1: DNMT3L: Role in development
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
We had previously initiated studies in Drosophila to analyze the regulatory mechanisms underlying the transcription of DNMT3L. Transgene reporter assay in Drosophila was performed wherein the promoter region flanked by loxP sites, was inserted upstream of the hsp70 promoter driven mini-white reporter gene containing P -element vector pCaSpeR. We also reported loss of DNA methylation at the DNMT3L promoter in a larger
cohort of cervical cancer patients. This loss of DNA methylation was also observed in tongue, esophagus and colorectal cancer samples.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

Role of DNMT3L promoter in regulation of its transcription

To gain insight into the regulatory elements present within the DNMT3L promoter/ Exon1 region, we performed reporter gene assay in Drosophila and mammalian cell lines.

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Jul. 2011)
Technical Officer I
Project Associate
Project Assistant (Till Nov. 2011)
Project Assistant (Till Jun. 2011)
CDFD, Hyderabad
CDFD, Hyderabad
CCMB, Hyderabad
NII, New Delhi

In the transgene reporter assay in Drosophila the DNMT3L promoter/ Exon1 region flanked by loxP sites was inserted upstream of the hsp70 promoter driven mini-white reporter gene. The comparison of eye color for the transgenic lines with lines lacking the promoter was performed. As shown in Figure 1, the presence of DNMT3L promoter/ Exon1 region in the reporter construct lead to decrease in the transcriptional potential of the hsp70 promoter indicating that the DNMT3L promoter/Exon1 region was acting as a transcriptional repressor.
For the transfection reporter assay, the DNMT3L promoter/Exon1 region was cloned upstream of the CMV promoter in the pAcGFP1-CMV vector to examine the effect of this region on the transcription of GFP reporter gene under the CMV promoter. Upon transfection into mammalian cell lines, the analysis of the reporter gene transcription showed that the presence of DNMT3L promoter/Exon1 region in the reporter construct causes repression of the GFP expression.

Project 2: Host epigenetic response to infection.
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
To influence the epigenetic circuitry of the human host cells, a mycobacterium needs to possess factors (proteins/RNA) which could interact or influence the effectors of epigenetic modifications. 17 of the 29 annotated putative methyltransferases in the Mycobacterium tuberculosis genome were taken up for an initial analysis to examine their:
i) DNA methyltransferase activity;
ii) Ability to get secreted out of the mycobacterium;
iii) Subcellular localization in the host cell upon infection.
Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012) In order to respond to the infection by M. tuberculosis, the host cells would have to

Figure 2. Comparison of DNA methylation between uninfected and Mtb infected Thp1 cells. A representative profile for DNA methylation difference at the HDAC9 locus. Data output from SOLID ${ }^{\text {TM }}$ Next generation Sequencing Platform was profiled using the IGV software. Top panel shows the chromosomal location. Panel 2-5 show the Sequence tags that were mapped to this region. Panel 2 is for 48 hrs infected sample, panel 4 shows profile for 0 hrs infected sample whereas panel 5 and 3 are uninfected sample at 0 and 48 hrs respectively. Bottom panel shows the genes present within this region.
reprogram the epigenetic markings at several loci in the genome so that the affected gene may be appropriately modulated. One of the aims of our study is to examine these epigenetic changes and identify the genetic loci where these changes are
brought about. This, we believe, will provide us important evidence about the genes in the host that might be participating in a response to mycobacterial infection. To examine the DNA methylation changes upon infection, PMA treated

THP1 cells (Human acute monocytic leukemia cell line) were infected with M. tuberculosis. DNA isolated from the host cells was analysed by Methylated DNA ChIP-Seq. We were able to identify more than 300 loci in the THP1 cell genome that showed change in DNA methylation upon infection (representative DNA methylation difference shown in Figure 2). Validation of these results and the consequent effect of these changes on the expression of affected genes are ongoing.
Project 3: Specialized chromatin structures as epigenetic imprints to distinguish parental alleles.

Summary of work done until the beginning of this reporting year (Upto March 31, 2011)

We obtained, through a collaboration with CDB, Kobe and NCBS, Bangalore, mice which had the second intron of Neuronatin replaced by a Neocassette at its endogenous locus (referred to as Nnat Δl^{2} henceforth). In the previous years we had examined the effect of this deletion on the expression of the imprinted Neuronatin gene.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
Functional analysis of Neuronatin's second intron (NNI^{2})

To test the possibility that the second intronic region of Neuronatin is a transcriptional activator even in mammals, mice in which the second intron of Neuronatin had been deleted were generated. We had previously reported loss of Neuronatin expression in paternal heterozygous and homozygous Nnat $\Delta{ }^{2}$ mice indicating the role of NNI^{2} as a transcriptional activator. Further analysis of these mice showed that the NNI^{2} deletion also affected the expression of Blcap the other imprinted gene in the locus. Moreover, DNA methylation analysis indicated that loss of Neuronatin expression in paternal heterozygous and homozygous Nnat $\left.\Delta\right|^{2}$ mice was correlated with gain of DNA methylation at the Neuronatin promoter. Moreover, Nnat $\Delta \Delta^{2}$ mice were found to have aberrant body weight as compared to their wild type littermates. While paternal heterozygous and homozygous Nnat ΔI^{2} mice showed higher body

Figure 3. Nnat ΔI^{2} mice show aberrant body weight. Body weight for the different categories of mice was measured at the indicated ages. 15 mice for each category were examined. WT: wild type; PAT: paternal heterozygous Nnat ΔI^{2} mice; MAT: maternal heterozygous Nnat ΔI^{2} mice; HOM: homozygous Nnat ΔI^{2} mice. ${ }^{*}: p \leq 0.05 ; * *: p \leq 0.01 ; * * *: p \leq 0.005$.
weight, the maternal heterozygous Nnat Δl^{2} were lighter than the wild type mice (Figure 3).

Publications

1. Singh NP, Madabhusi SR, Srivastava S, Senthilkumar R, Neeraja C, Khosla S and Mishra RK (2011). Epigenetic profile of the euchromatic region of human Y chromosome. Nucleic Acids Research 39: 3594-3606.
2. Thiagarajan D, Dev RR and Khosla S (2011). The DNA methyltranferase Dnmt2 participates in RNA processing during cellular stress. Epigenetics 6: 103-113.

Other publications

1. Gokul G and Khosla S. DNA methylation and cancer. Epigenetics: Development and Disease. Editor: Kundu TK. Springer Publications (In press).

LABORATORY OF MOLECULAR ONCOLOGY Genomics and Molecular Genetics of Cancer and Human Genetic Disorders

Principal Investigator	Murali D Bashyam
PhD Students	Ratheesh Raman
	M Khursheed
	P Ramaswamy
	Adduri S Rama Raju
	Dimendra Hazarika
Other Members	Ajay K Chaudhary
	Jayaprakash Kolla
	K Viswakalyan
	Brijesh Yadav
	V Chandrasekhar
	A Dalal
	HA Nagarajaram
	G Swarnalata
	RA Sastry
	R Kongara
	S Koganti
	C Sundaram
	S Uppin
	M Srinivasulu
	D Desai
	Subramanyeswar Rao
	KVN Raju
	AR Ramadevi
	Ramana Davuluri

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow (Since Jul. 2011)
Technical Assistant
Research Associate (Since Dec. 2011)
Research Assistant
Research Assistant
Junior Project Technician
CDFD, Hyderabad
CDFD, Hyderabad
Apollo Hospitals, Hyderabad
NIMS, Hyderabad
NIMS, Hyderabad
NIMS, Hyderabad
NIMS, Hyderabad
NIMS, Hyderabad
MNJ Hospital, Hyderabad
Hinduja Hospital, Mumbai
IACHRC, Hyderabad
IACHRC, Hyderabad
Sandor Proteomics, Hyderabad
Wistar Institute, USA

Objectives

1. Identification and characterization of important deregulated genes/pathways in cancers prevalent in India;
2. Identification and characterization of disease causing mutations in genetic disorders.

Summary of work done until the beginning of this reporting year (upto March 31, 2011)

Colorectal cancer (CRC)

Work carried out during the previous reporting year indicated specific biological differences in tumors occurring in rectum and colon especially in young patients. The reduced occurrence of Wnt activation in early-onset CRC was more pronounced in rectal tumors as compared to colonic tumors. In addition, K-Ras mutation frequency was significantly reduced in rectal cancer occurring in the young but not in the elderly unlike colonic cancer. No
significant difference was however observed with respect to p53 and microsatellite instability status; neither between the two age groups nor between colon and rectum. Surprisingly, the Wnt- samples exhibited significant chromosomal aberrations. In parallel, we profiled genetic aberrations causing Hereditary Non-Polyposis Colorectal Cancer (HNPCC) in Indian patients. Surprisingly, only 42% of suspected HNPCC patient samples were negative for MLH1/MSH2 protein expression, though 85% samples exhibited microsatellite instability confirming their HNPCC status. Mutations were identified in 10 of 11 samples screened including five novel mutations; four in $h M s h 2$ and one in hMIh1. Loss of heterozygosity appeared to be the most common mode of somatic inactivation of the second allele.

Pancreatic cancer

During the previous reporting year, we characterized a novel tumor suppressor gene for pancreatic
cancer based on analysis of a recurrent deletion located at 6 q 25.3 , which included only one annotated gene viz. ARID1B encoding a component of the human SWI/SNF chromatin remodeling complex. Permanent transfectants generated in MiaPaCa 2 (harboring a homozygous deletion for ARID1B) exhibited reduced ability to form colonies in liquid as well as solid culture when compared to vector transfectants. However, there was no significant difference in growth as determined by MTT and crystal violet staining. We detected elevation of ARID1B transcript upon treatment with 5'-Azacytidine in several pancreatic cancer cell lines harboring a mono-allelic loss of ARID1B, indicating that the second allele might be repressed through promoter hypermethylation. A CpG island was identified in the ARID1B promoter and bisulphite sequencing revealed extensive hypermethylation.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
Project 1: Molecular genetic analyses of earlyonset sporadic CRC
A careful analysis of copy number alterations identified in Wnt- and Wnt+ colorectal tumors revealed the presence of a high level amplification at 5p11.2 (Figure 1A). This locus harbors the hTERT gene. Next we performed genome-wide transcript profiling using microarrays on RNA isolated from Wnt- and Wnt+ colorectal tumor
samples. Preliminary analysis revealed Wnt pathway genes to be differentially expressed in the two colorectal cancer subtypes confirming the Wnt status of the tumors. Computational analysis to identify pathways driving tumorigenesis in Wntsamples is currently underway. Next we performed genome-wide RNA sequencing using RNA isolated from two Wnt- and Wnt+ early-onset rectal cancer samples each. The samples were matched for grade and stage, were microsatellite stable, wild type for KRAS and mutant for TP53 (Figure 1B). Differential expression analysis using DEseq and Cuffdiff is currently underway. In parallel, we continued our studies on HNPCC. We further analyzed MSH6/PMS2 status in the suspected HNPCC patient samples that were positive for MLH1/MSH2 expression. Of the 31 samples tested, only 2 were negative for MSH6 expression and 3 for PMS2; no mutations were detected in these 5 samples. Since it is possible that mutation might not result in loss of protein expression, we next screened all remaining 26 samples for mutation in the four genes. We detected the MSH2 c. $67 \mathrm{~T}>\mathrm{C}(\mathrm{p} . \mathrm{F} 23 \mathrm{C})$ in two samples and the PMS2 c. $-88 \mathrm{C}>$ ((5 ' UTR) mutation in one sample. MLPA kit (MRC; Holland) based evaluation of possible mono-allelic single exon copy number gains and losses in the MLH1 and MSH2 genes in the remaining samples where no mutation was detected, yielded negative results. Therefore, in 23 of the total 46 samples (50%) we could not detect

Figure 1. Identification of genetic alterations distinguishing Wnt- and Wnt+ CRC. Panel A shows identification of high level amplification at 5p15.1-2 (hTERT; top) and 7p12 (EGFR; bottom) exclusively in Wnt- CRC samples as determined through array-based comparative genomic hybridization. Panel B shows representative region exhibiting differential transcript profiles as determined through next generation RNA sequencing analysis. The MTRNR2L8 gene exhibits significantly elevated transcript levels in Wnt- samples (green and magenta) as compared to Wnt+ samples (dark blue and light blue). The result from brain transcripts (black) is shown as a control. The FPKM value for each sample is given on the right side in the same colour code.
any genetic lesion in the four common genes suggesting thereby the possibility of involvement of novel hitherto unidentified genes in HNPCC patients from India.

Project 2: Identification and characterization

 of novel pancreatic cancer genesWe first confirmed that the ARID1B permanent transfectants generated in MiaPaCa2 did not exhibit a significantly different rate of apoptosis (as measured through Hoechst staining and AnnexinV assay) as well as growth (as measured using cell cycle analysis on FACS) when compared to vector transfectants. We next evaluated effect of Trichostatin A (TSA) on ARID1B expression in pancreatic cancer cell lines. Varying
tissue as compared to normal pancreas in a high proportion of samples as evaluated using immunohistochemistry. Thus ARID1B appears to be a novel tumor suppressor for pancreatic cancer (Figure 2B).

Project 3: Molecular genetic analysis of maple syrup urine disease

This is a new activity. Maple Syrup Urine Disease (MSUD) is a rare metabolic disorder caused by reduced/absent activity of the branched chain α Ketoacid dehydrogenase enzyme complex. Mutations in BCKDHA, BCKDHB and DBT, that encode important subunits of the enzyme complex namely $\mathrm{E} 1 \alpha, \mathrm{E} 1 \beta$ and E 2 , are the primary cause for the disease.

concentrations of TSA, either alone or in combination with azacytidine, resulted in a significant increase in ARID1B transcript levels in several cell lines (Figure 2A). In order to assess the clinical significance of $A R I D 1 B$ in pancreatic cancer, we generated a pancreatic cancer tissue miocroarray comprising of a) pancreatic adenocarcinoma from head of pancreas, tail of pancreas, ampulla of vater and duodenum and b) pancreatic neuroendocrine tumors in addition to matched normal tissue for each tumor. Normal and cancerous tissues from stomach, colon, esophagus and normal tissues from muscle and placenta were also included as controls. ARID1B exhibited significantly reduced expression in tumor

We have performed the first molecular genetic analysis of MSUD from India on nine patients exhibiting classical MSUD symptoms. BCKDHA and BCKDHB mutations were identified in four and five patients respectively including seven novel mutations namely the BCKDHA c.1249delC, c.1312T>C and c.1561T>A and the BCKDHB c. $401 \mathrm{~T}>\mathrm{A}, \mathrm{c} .548 \mathrm{G}>\mathrm{A}, \mathrm{c} .964 \mathrm{~A}>\mathrm{G}$, and c.1065delT. The BCKDHBc.853C>T (p.R285X) mutation was shown to trigger nonsense mediated decay-based transcript degradation (Figure 3). Seven of the total eleven mutations resulted in perturbations in the $\mathrm{E} 1 \alpha$ or $\mathrm{E} 1 \beta$ C-termini either through altered termination or through an amino acid change; these are expected to result in disruption of E1 enzyme

Figure 3. The result of quantitative RT-PCR based evaluation of $B C K D H B$ transcript level relative to GAPDH in RNA isolated from fibroblasts derived from skin biopsy obtained from a normal individual and the proband harboring the c.853C>T mutation. Unpaired t test p value is shown.
complex assembly. Our study has therefore revealed that BCKDHA and BCKDHB mutations might be primarily responsible for MSUD in the Indian population.

Future plans and direction

Genome-wide transcript profiling using microarrays and RNA Sequencing will be continued to identify tumorigenesis pathways driving $\mathrm{CIN}+/ \mathrm{Wnt}-/ \mathrm{MSI}-$ early-onset rectal cancer.

Further characterization of ARID1B and its transcriptional targets with respect to pancreatic cancer will be carried out.

Characterization of selected mutations affecting transcript stability/processing identified through screening of various genetic disorders will be characterized.

Publications

1. Kwei KA, Shain AH, Bair R, Montgomery K, Karikari CA, van de Rijn M, Hidalgo M, Maitra A, Bashyam MD and Pollack JR (2011). SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS One 6: e23924.
2. Bashyam MD, Purushotham G, Chaudhary AK, Rao KM, Acharya V, Mohammad TA, Nagarajaram HA, Hariram V and Narasimhan C (2012). A low prevalence of MYH7/MYBPC3 mutations among familial hypertrophic cardiomyopathy patients in India. Molecular and Cellular Biochemistry 360:373-382.
3. Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A and Pollack JR (2012). Convergent structural alterations define SWItch/Sucrose NonFermantable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proceedings of the National Academy of Sciences of the USA 109: E252-E259.
4. Bashyam MD, Chaudhary AK and Bhat V. The IVS2+837T>G appears to be a relatively common 'rare' β-GLOBIN gene mutation among β-Thalassemia patients in the South Indian state of Karnataka. Hemoglobin (In press).
5. Bashyam MD, Chaudhary AK, Reddy EC, Reddy V, Acharya V, Nagarajaram HA, Devi ARR, Bashyam L, Dalal AB, Gupta N, Kabra M, Agarwal M, Phadke SR, Tainwala R, Kumar R and Hariharan SV. A founder ectodysplasin A receptor (EDAR) mutation results in a high frequency of the autosomal recessive form of hypohidrotic ectodermal dysplasia in India. British Journal of Dermatology (In press).
6. Muranjan M, Agarwal S, Lahiri K and Bashyam M. Novel biochemical abnormalities and genotype in Farber disease. Indian Pediatrics (In press).

LABORATORY OF CANCER BIOLOGY
 Cellular Senescence and Sirtuin Biology, and Cancer Cervix Progression

Principal Investigator	Gayatri Ramakrishna
PhD Students	Shashi Kiran Babul Moni Ram Tarique Anwar Rajendra Angara
Other Members	Nirupama Chatterjee Sapana Singh Rakesh Kulkarni Vineesha Oddi
Collaborators	Nashreen Islam Renu Wadhwa P Uday Kumar

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Jul. 2011)
Technical Officer
Post Doctoral Fellow
Project Junior Research Fellow
Project Junior Research Fellow (Since Jul. 2011)
Tejpur University, Assam
AIST, Japan
NIN, Hyderabad

Objectives

The major focus of our research includes:

1. Understanding the process of cellular senescence;
2. Role of candidate biochemical pathways and genetic/epigenetic changes during cancer cervix progression.
Project 1: Understanding the mechanism of cellular senescence

Telomere attrition is a well known cause for cellular senescence. However, oxidative damage can accelerate ageing leading to premature senescence. In this context, we had earlier proposed a role of wild type Ras in growth arrest (Arvind et al. FASEB J. 2005, Bose et. al. 2011). Infact, senescence is now considered an important growth arrest mechanism in context of neoplastic transformation. We are currently focusing on two main aspects: (a) to understand the paradoxical role of NAD-dependent histone deacetylase viz., SIRT7, in cellular proliferation and senescence and (b) role of redox in accelerating senescence.

Summary of work done until the beginning of this reporting year (upto March 31, 2011)

We had earlier reported that SIRT7 levels decline during the process of replicative senescence and SIRT7 overexpression provides subtle growth advantage. In addition, we reported the use of catalase resistant peroxovanadate compound, as an alternate tool to induce premature cellular senescence.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

1a. Understanding the biology of SIRT7 in context of senescence

Besides the genetic make-up of the cell, the epigenome plays a crucial role in gene regulation. The epigenome in turn is maintained by acetylation and methylation of the chromatin and its associated proteins. Chromatin modifications are brought about by DNA methyl transferases (DNMTs) and histone deacetylases (HDACs). Amongst the various known histone deacetylases, members of the silent information regulator 2 (Sir2) family are conserved from yeast to humans and regulate lifespan in various organisms. Some of the recent reports point to role of Sirtuins as critical regulators at the crossroads between cancer and aging. However, the exact functions of the various isoforms in context of cell proliferation and ageing is still unclear in higher organisms. We undertook a detailed study on the role of Sirtuins and in particular SIRT7 with the following objectives: (a) identification of localization signals of SIRT7, (b) role of SIRT7 if any in cellular senescence. The nuclear cytoplasmic shuttling of SIRT7 is hitherto unknown. Using two different N - terminal specific antibodies we now demonstrate cytoplasmic localization of SIRT7 in human fibroblasts viz., WI38, TIG and MRC5, besides its well known nucleolar niche (Figure 1). Immunoblot analysis indicated presence of a long isoform of SIRT7 (47.5kD) which remains associated with the cytosolic fraction atleast in the fibroblasts and a
short isoform (45 kD) associated with the nuclear fraction. In the epithelial cells SIRT7 was exclusively compartmentalized to the nucleolplasm and nucleolar regions. We have now identified the presence of nuclear and nucleolar localization signals in the N - and C - terminal regions of SIRT7. In the previous report, using fibroblast cultures we had shown that SIRT7 levels decline following replicative senescence. Intriguingly, we now report loss of nucleolar SIRT7 during replicative senescence in primary fibroblasts (TIG, WI38). Interestingly, overexpression of SIRT7 in fibroblasts prevented stress induced senescence by adriamycin when treated at lower doses.

1b. Role of SIRT1 in cervical neoplasia

Recent studies point to a close connection between cancer and ageing. Cellular senescence when initiated early in cancerous cells results in growth suppression due to permanent growth arrest. However, the role of human Sirtuin isoforms in malignancies and cellular senescence is still controversial. We therefore designed a study to evaluate the correlation of SIRT1 expression with proliferation marker Ki-67, and growth arrest/ senescence marker p27, during cervical cancer progression. The expression was evaluated by immunohistochemistry in 70 formalin fixed archival human cervical samples: normal/ASCUS ($\mathrm{N}=20$), preneoplastic squamous intraepithelial lesions (SIL $\mathrm{N}=20$) and invasive squamous cell carcinoma
(SCC, $\mathrm{N}=30$ samples). The intraepithelial lesions and SCC cases were positive for human papilloma virus as detected by in-situ hybridization. The SIRT1 expression was either absent or feeble in cytoplasm of normal/ASCUS cervical epithelium, while a progressive increase in its expression was noted in 65% of preneoplastic lesions (SIL). Intriguingly, the invasive carcinoma showed heterogeneous pattern for both expression and localization of SIRT1: ranging from negative to strong expression levels and mixed localization pattern in cytoplasm only or both in nucleus and cytoplasm. The growth arrest/senescence marker p27 showed elevated level of expression in SIL cases compared to SCC (75%). Interestingly, the increased nucleocytoplasmic expression pattern of SIRT1 correlated well with the increased expression of p27 in the intraepithelial preneoplastic lesion. In conclusion, our results suggest activation of growth suppressive pathways by SIRT1-p27 regulation, atleast in the preneoplastic lesions of cancer cervix which may help retard its progression to invasive cancer.
1c. Chemical tools which change the cellular redox states to study premature senescence

In continuation with the previous studies on Sirtuins and ageing, we are also trying to establish cell culture systems to induce premature senescence so as to study various biochemical and cellular changes associated with the process of cellular

Figure 1. Endogenous localization of SIRT7 as detected by N-terminal and C-terminal specific antibodies in primary fibroblasts, WI38. (A) Schematic representation of hSIRT7 showing the different epitopes recognized by the two different N-terminal antibodies and one C-terminal specific antibody used in the present study. (B) Immunofluorescence study to localize endogenous SIRT7 in WI38 using the different antibodies. Note, the intense cytoplasmic and nucleolar staining of SIRT7 using the two different N-terminal antibodies. The C-terminal specific antibody stains intensely the nucleolar compartment while the cytoplasm stains feebly. DAPI was used to visualize nuclei.
ageing. Treatment of cells with a variety of cytotoxic agents usually at sub-lethal doses can induce stress induced premature senescence (SIPS). $\mathrm{H}_{2} \mathrm{O}_{2}$ is the most preferred oxidant for studying SIPS and is also considered a unifying ageing mediator. $\mathrm{H}_{2} \mathrm{O}_{2}$ is rapidly degraded as cells as are well equipped with catalase and glutathione peroxidase systems, hence very high concentrations and long duration of $\mathrm{H}_{2} \mathrm{O}_{2}$ treatment is needed to induce features of SIPS. Intriguingly, $\mathrm{H}_{2} \mathrm{O}_{2}$ forms a stable peroxo-complex with orthovanadate, diperoxovanadate (DPV), at pH 7.0, and its peroxo groups are relatively slowly degraded by catalase. In this context we had earlier shown that DPV can act as a good oxidant because of an active and stable peroxo-group, and can substitute for $\mathrm{H}_{2} \mathrm{O}_{2}$ mediated SIPS at much lower concentrations. In continuation with this work we are now utilizing polymeric peroxovandate which are also able to induce SIPS. The polymeric peroxovanadate induce cytoskeletal changes including activation of the small GTPase, Rac-1. The role of Rac1-NADPH oxidase system in accelerating the process of senescence is
currently being investigated. Our findings suggest that inorganic peroxides act as an alternate and more efficient tool in studying various cellular effects such as cytoskeletal changes and cellular senescence because of its definitive faster response as compared to $\mathrm{H}_{2} \mathrm{O}_{2}$.

Project 2: Pathways in cancer cervix

 progressionCervical cancer is a leading cause of mortality among women especially in rural India. Our research group's current focus is on: cancer cervix prevention strategies in rural population and role of candidate biochemical pathways and genetic/ epigenetic changes during cancer cervix progression. In this respect we undertook an initiative with the following objectives: (a) the prevalence and genotype distribution of high risk HPV types in cervical specimens collected from women residing in rural set up of Medchal Mandal in Andhra Pradesh (collaboration with Mediciti group) and (b) role of serine/threonine phosphatase, calcineurin in cervical cancer.

Figure 2. Role of calcineurin activation in cancer cervix cell line, SiHa. (A) Calcineurin activity is higher in cancer cervix cell line, SiHa , as compared to immortalized counterpart HaCaT , (B) Inhibiting calcineurin activity with cyclosporine A (CsA) leads to induction of cyclin dependent kinase inhibitors, p21 and p27, (C) Cell cycle distribution analysis of cyclosporine A treated cells, and (D) Massive cellular vacuolation induced by CsA treatment in SiHa cell line.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

Role of calcineurin pathway in cancer cervix progression and inhibition of calcineurin results in non-apoptotic cell death pathway
Calcium (Ca^{2+}) has been known for long as an almost universal intracellular messenger, controlling a diverse range of cellular processes, such as gene transcription, cell proliferation and cell death. Calcium signaling is mediated through many signal transduction cascades involving calcium interacting proteins and one such important signaling event is activation of protein phosphatase calcineurin and its downstream effector NFAT (Nuclear Factor Activated in T cells). The role of calcineurin signaling is well established in immune cells, cardiac cells and certain neuronal cells. However, there is still a lacuna in understanding of calcineurin mediated pathways with regard to other epithelial cell types. An attempt is being made to understand the role of calcineurin-NFAT network in context of neoplasia with the following objectives: (a) role of calcineurin activated pathways in cervical cancer cell lines and (b) impact of pharmacological inhibitor of calcineurin viz., cyclosporine A, on growth of cancer cervix cell lines viz., Hela and SiHa. Our results indicate a significant increase in activity of calcineurin in cervical cancer cell line (SiHa) as
compared to its immortalized cell counterpart, HaCaT (Figure 2). The HPV infected cancer cervix cell lines showed a significant upregulation of NFATDNA binding activity. To test if calcineurin inhibition results in growth inhibition in cervical cancer cell lines, we used cyclosporine A (CsA) a well known immunosuppressant and pharmacological inhibitor of calcineurin. Indeed, CsA inhibited the growth and foci formation in SiHa cells and serendipitously we made an unusual observation that cyclosporineA treatment leads to massive cellular vacuolation leading to a non-apoptotic cell death pathway.

Publications

1. Bose S, Sakhuja P, Bezawada L, Agarwal AK, Kazim NS, Khan LA, Sarin SK and Ramakrishna G (2011). Hepatocellular carcinoma with persistent hepatitis B virus infection shows unusual downregulation of Ras expression and differential response to Ras mediated signaling. Journal of Gastroenterology and Hepatology 26: 135-144.
2. Chatterjee N, Kiran S, Ram BM, Islam N, Ramasarma T and Ramakrishna G (2011). Diperoxovanadate can substitute for $\mathrm{H}_{2} \mathrm{O}_{2}$ at much lower concentration in inducing features of premature cellular senescence in mouse fibroblasts (NIH3T3). Mechanisms of Ageing and Development 132: 230-239.

LABORATORY OF COMPUTATIONAL AND FUNCTIONAL GENOMICS
 Computational and Functional Genomics of Microbial Pathogens

Principal Investigator
PhD Students

Other Members

Collaborators

Akash Ranjan
Jamshaid Ali
Rohan Misra
Bhavik Sawhney
Ajit Roy
Suhail Yousuf
Abhishek Kumar
T Shashi Rekha
G Srujana
Regine Hengge Lothar H Wieler Astrid Lewin

Niyaz Ahmed

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow (Since Jan. 2012)
DBT Research Associate
Project Junior Research Fellow (Since Dec. 2011)
Freie University, Germany
Freie University, Germany
Robert Koch Institute, Germany
University of Hyderabad, Hyderabad

Project I: Genome analysis and functional characterization of the genomes of microbial organisms

1. Characterization of the promoter and transcription factor binding sites in Mycobacterium tuberculosis
There are thirteen sigma factors encoded in the genome of M. tuberculosis, which regulate gene expression. Most promoters, however, have not been successfully classified to their relevant sigma factor.

Objective

1. To elucidate the promoter context of transcription factors.

	TP Rate	FP Rate	Precision	Recall	F-Measure	ROC Area	Class
	0.83	0.26	0.75	0.83	0.79	0.85	Promoter
Weighted	0.74	0.17	0.83	0.74	0.78	0.85	Negative
Average	0.78	0.21	0.79	0.78	0.78	0.85	

Table 1. Results of the Naive Bayesian model

Summary of the work done until the beginning of this reporting year (upto March 31, 2011)

A database of putative M. tuberculosis promoters was constructed using the already published consensus sequences of sigma factors. Binding sites of the IdeR repressor were used to generate putative binding sites using PredictRegulon.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
2. Characterization and functional studies on FadR like proteins from M. tuberculosis

GntR family of transcription regulators plays a wide range of roles in cellular physiology. Initially characterized in Bacillus subtilis, this family has been studied in many other organisms. However this family remains poorly studied in mycobacteria. Hence, we initiated the characterization of few members of this family from M. tuberculosis. One
of the members of this family, Rv0494, is a GntR like protein predicted to be a member of FadR family. Since FadR members from other organisms have been shown to play vital functions in cellular physiology, we wanted to characterize this protein in mycobacteria.

Objectives

1. Expression of GntR as recombinant protein;
2. Identification of transcription factor binding site;
3. Promoter characterization;
4. Target gene identification;
5. Identification of effector molecules.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

During this period of work we cloned rv0494 gene in pET23a vector. The protein was expressed, the homogeneity of which was checked on SDS PAGE. We have shown that Rv0494 is present in dimer form in solution. The binding site of Rv0494 was predicted using computational approach, and it was localized near the start codon in the form of a five base pair long palindrome. This predicted binding site was verified using electrophoretic mobility shift assay. Similar sites were found out in the whole genome of M. tuberculosis and these sites were verified for their interaction with Rv0494, we have also shown that long chain fatty acyl
coli that is not present in non-pathogenic strains. Several open reading frames are present within this locus, including one that was identified as slyA. It was inferred from the study that the pathogenic strains of E. coli have two slyA like genes. The first slyA gene is located at 37.6 min . on the chromosome. The second slyA is a homologous gene, ECs3594, whose initial identification was based on an annotation of the rpoS-mutS region sequence from E. coli O157:H7. This gene was later identified as a different gene and was renamed as hosA. Through comparative amino acid analysis it has been shown that HosA protein belongs to MarR family. Our study aims to understand the structural, biophysical, and functional characterization of the HosA protein. The results of this study will provide insight into the role and importance of this protein uniquely present in pathogenic E. coli.

Objectives

1. Expression and purification of HosA;
2. Determination of biochemical and biophysical properties of recombinant HosA protein;
3. Structural study of the recombinant HosA protein;
4. Determination of consensus nucleotide sequence recognised by HosA;
5. Identification and characterization of the HosA regulon.

Figure 1. In vitro binding assay showing Rv0494 interacting with the upstream region. (A) Increasing protein concentration from 0-3 pico moles was used. (B) Effect of palmitoyl coenzyme A on the DNA-protein interaction. The ligand concentration was increased from 10-50 picomoles with fixed protein concentration of 3 picomoles.
coenzyme A molecules inhibit the protein-DNA interaction, however no effect on this interaction was observed in case of short and medium chain fatty acyl coenzyme A (Figure 1).
3. Structural and functional studies of HosA, a MarR like protein from pathogenic Escherichia coli
A novel $2.9-\mathrm{kb}$ insertion sequence is located at the 32 terminus of rpoS in pathogenic Escherichia

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
The hosA gene was cloned and expressed in pET21b (+) vector. The purification of recombinant HosA was done using Ni-NTA affinity chromatography. The purity of the protein was checked by 12% SDS-PAGE and has been shown to form a dimer through gel filtration chromatography using a Superdex 75 column (Figure 2). The purified protein was shown to bind to the
upstream region of the gene for flageller hook protein fliC (Figure 3). Hence it is being considered to regulate the motility in pathogenic strains.

Figure 3. Electrophoretic mobility shift assay (EMSA) (Lane 1 - Free probe, Lane $2-0.2 \mu \mathrm{M}$ of HosA, Lane $3-0.4 \mu \mathrm{M}$ of HosA, Lane $4-0.8 \mu \mathrm{M}$ of HosA, Lane $5-1.6 \mu \mathrm{M}$ of HosA, Lane $6-3.2 \mu \mathrm{M}$ of HosA, Lane $7-4 \mu \mathrm{M}$ of HosA, Lane8-5 M of HosA, Lane $9-6 \mu \mathrm{M}$ of HosA).

Project 2: Genome analysis and functional characterization of Plasmodium falciparum

1. An improved method of classification for the intronic and exonic sequences of the apicomplexan genomes
Apicomplexa is a phylum comprising of organisms, which cause several infectious/parasitic diseases in human as well as animals. This phylum consists of genomes, with a demarcation in the AT-content of the coding and noncoding regions, which can be explored further for better classification.

Objective

1. To develop a better method of classification for the intronic and exonic sequences.

Summary of the work done until the beginning of this reporting year (upto March 31, 2011)

Dinucleotide analysis of the coding and noncoding regions of P. falciparum exhibits a significant demarcation in their correlation values with the noncoding regions having higher correlations than the coding.
Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
We have obtained the experimentally validated exonic and intronic sequences for P. falciparum 3D7. The datasets were divided into training (66%) and test (33%) sets and different classifiers were applied using Weka tool (version 3.7.5). The best model generated on the training set was with Random Forest classifier (with 10 -fold crossvalidation), that was further used for evaluating the test set. We have observed that the test data was evaluated, with a significant ROC value of 0.89 (exons and introns) and a precision of 0.919 (exons) and 0.934 (introns) (Table 2).

Class	TP rate	FP rate	Precision	ROC Area
Exon	0.985	0.294	0.919	0.89
Intron	0.706	0.015	0.934	0.8

Table 2. Evaluation summary of the test set obtained for P. falciparum 3D7 using the Random Forest classifier
2. Role of multiple Acyl CoA binding protein paralogs in P. falciparum
Acyl-coenzyme A binding proteins (ACBPs) are a family of 86 to 103 residues ($\sim 10 \mathrm{kD}$) proteins with conserved amino acid sequences. There are experimental evidences from diverse sources suggesting their role in modulation of fatty acid biosynthesis, regulation of the intracellular acylCoA pool size and many more basic metabolic processes. Knockout/down studies in Trypanosoma brucei and HeLa cell lines have proved that ACBP is essential.

Objective

1. To study the binding preferences of all Pf ACBPs for different ligands
Summary of the work done until the beginning of this reporting year (upto March 31, 2011)
We have cloned and expressed all the four ACBPs as histidine-tagged recombinant proteins and purified them by Ni-NTA affinity chromatography. The ACBPs were further purified by gel filtration on a Superdex-75 column.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
ACBPs are highly conserved even in a highly diverged eukaryote like P. falciparum. We hypothesized that there should be some additional function of ACBP in P. falciparum apart from binding to acyl CoAs. It is a well known fact that the lipid contents of normal and infected RBCs are different from each other. The maximum expression stage of $A C B P$ is merozoite in which these lipid changes are observed. We wanted to know whether PfACBP has anything to do with lipid changes in merozoite stage or not. We checked the binding of PfACBPs with phospholipids and diacylglycerols in addition to different acyl CoAs using Protein Lipid Overlay assay, a technique similar to western blot used for detecting protein-lipid interactions. Next we took fluorescence spectra in presence of these molecules and observed that they quench ACBP fluorescence (data not shown).
3. Functional genomic studies of unannotated proteins in P. falciparum tRNA modification pathway in P. falciparum
tRNA act as an adaptor molecule in protein translation that ensures decoding of the successive codons in the messenger RNA on the ribosome, thus facilitating synthesis of a protein corresponding to that mRNA molecule. To attain a stable structure and perform the important function, tRNA undergoes extensive post transcriptional modifications, of which the conversion of adenosine to inosine at the wobble position facilitates the recognition of the three different nucleotides of an amino acid. P. falciparum tRNAs which undergoes modification at the wobble position from A to I were identified. In P. falciparum this enzymatic modification of adenosine to inosine is catalyzed by Adenosine deaminase acting on tRNA molecule; ADAT 2 (PF13_0259) and ADAT3 (PFL0230w) respectively.

Objectives

1. To identify amino acid codons, which do not have cognate tRNA molecules in P. falciparum and within this pool identify the tRNA molecules which have A to I modification;
2. To determine the enzyme/s involved and study their individual role in binding and editing.
Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

It was observed that different tRNA species undergo A to I modification to varying degrees. Interestingly, it was further observed that such modifications at anticodon of tRNA was invariably accomplished by modification of C to U at one position upstream of the first base of anticodon. Also, both ADAT2 and ADAT3 were homogenously expressed from bacterial expression system and it was observed that ADAT3 plays an important role in binding tRNA molecules (Figure 4).

Figure 4. The binding of ADAT3 to tRNA Valine at different protein concentrations at $4^{\circ} \mathrm{C}(\mathrm{A})$ and $23^{\circ} \mathrm{C}(B)$ respectively.

Publication

1. Ali J, Paila U and Ranjan A (2011). ApicoAlign: An alignment and sequence search tool for apicomplexan proteins. BMC Genomics 12 (Suppl. 3): S6.

LABORATORY OF TRANSCRIPTION
 Mechanism of Transcription Termination and Antitermination in Escherichia coli

Principal Investigator	Ranjan Sen
PhD Students	Ghazala Muteeb
	Amitabh Ranjan
	Rajesh Kumar
	Saurabh Mishra
	Mohd Zuhaib Qayyum
	V Vishalini
Other Members	Debashis Dey
	Rajeswari Hosammani
	Savita Sharma
	Sapna Godavarthi
	Shalini Mohan
	Radhika Kunamneni
	M Pallavi
Collaborators	Udayaditya Sen
	V Nagaraja

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow
Post Doctoral Fellow
Post Doctoral Fellow (Since Jul. 2011)
Post Doctoral Fellow (Since Dec. 2011)
Technical Officer I
Project Assistant (Till Jan. 2012)
Project Assistant (Since Jun. 2011)
Project Assistant (Since Nov. 2011)
SINP, Kolkata
IISc, Bangalore

Objectives

Transcription must terminate at the end of each operon. In E. coli, the end of 50% of operons consist of an intrinsic termination signal that codes for a hairpin followed by a U-rich stretch in mRNA. Rest of the operons do not have any signature sequence and it is possible that termination of these operons depends on a factor called Rho. On the other hand, these termination signals can be overcome in response to certain types of modifications in the elongation complex and this process is called antitermination. The mechanism of these termination and antitermination processes is still not very clear and offers an exciting subject for study. In our laboratory, studies in the following areas are in progress.

1. Mechanism of action of transcription termination factor, Rho;
2. Molecular basis of Rho-NusG interaction;
3. Mechanism of transcription antitermination by N protein at Rho-dependent terminators;
4. Mechanism of action of transcription antitermination of Rho-dependent termination by an anti-rho factor Psu;
5. Physiological significance of Rho dependent termination.

Summary of the work done until the beginning of this reporting year (upto March 31, 2011)

1. We made a detailed in vitro characterization of the nascent RNA binding properties of Rho and established that loading onto RNA is prerequisite for Rho to perform the termination function (Kalyani et al., J. Mol. Biol., 2011).
2. We made significant progress in establishing the existence of in vivo kinetic coupling between the two molecular motors, Rho and RNA polymerase using different Rho, NusG and RNAP mutants.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
Project 1: Suppression of in vivo Rhodependent transcription termination defects: Evidence for kinetically controlled steps (Shashni et al., Microbiology, 2012)
The conventional model of Rho-dependent transcription termination in bacteria requires a "kinetic coupling" between the elongation complex and the translocating Rho on the nascent mRNA. This model has been recently challenged by a radical view, wherein Rho binds to the elongating RNA polymerase prior to loading onto the mRNA. This view questions the relevance of the kinetic coupling which was proposed from an observation
of the suppression of a Rho-mutant (rho201) by a slow-elongating RNA polymerase. The generality of this concept has never been tested. Using growth assays, micro-array analyses and reporter based transcription termination assays in vivo, we showed that slowing down of the transcription elongation rate suppressed the termination defects of five Rho mutants, three NusG mutants defective for Rho-binding and the defects caused by the two Rho-inhibitors, Psu and Bicyclomycin. These results established the generality of the existence of kinetic coupling in in vivo Rho-dependent termination which also strongly suggests that Rho translocates along the RNA and does not piggyback the elongation complex in vivo. Furthermore, these results indicated that one of the major roles of NusG in in vivo Rho-dependent termination is to enhance the RNA-release speed from the elongation complex.

Project 2: A multipronged strategy of an antiterminator protein to overcome Rhodependent transcription termination (manuscript submitted)
Rho-dependent transcription termination in bacteria has evolved to prevent gene expression from the DNA injected by bacteriophages. Lambdoid phages have designed transcription antitermination systems to overcome this Rho action. The
antiterminator protein N has three interacting regions which interact 1) with the mRNA, 2) with NusA and 3) with the RNAP. Here we show that N uses all these interaction modules to overcome Rho action. N and Rho co-occupy their overlapping binding sites on the nascent RNA (the nut site) and this configuration slows down the rate of ATP hydrolysis as well as the rate of RNA release by Rho from the elongation complex (EC). N-RNAP interaction is not too important for this Rho inactivation process near/at the nut site. This interaction becomes essential when the EC moves away from the nut site. From the unusual NusAdependence property of a Rho mutant E134K, a suppressor of N , we deduced that the N -NusA complex in the antitermination machinery reduces the efficiency of Rho by removing NusA from the termination pathway. As NusA is a major component of the all the antitermination systems, we propose that "NusA-scavenging" is a universal mechanism for the antiterminators to overcome the termination signals (Figure 1).
Project 3: Molecular basis of inhibition of Rhodependent transcription termination by a bacteriophage capsid protein

The 21 kDa bacteriophage P 4 capsid protein has a moonlighting activity as an inhibitor of the transcription terminator, Rho. It inhibits Rho by

Figure 1
forming a specific complex. The interaction surface of Psu on Rho is not known. Here by using suppressor genetics, cross-linking, Fe-BABE cleavage and site-specific mutagenesis we identified that a disordered looped region between 139-153 amino acids of Rho constitute the interaction surface for Psu. Based on these results and the crystal structures of Rho and Psu, we have proposed the structural model of Rho-Psu complex. In this model each of the monomers of the Vshaped Psu dimer interact with the two diagonally opposite subunits of Rho. This nature of complex formation explains the structural basis of inhibition of the translocase activity of Rho by Psu (Figure 2). The homology models of Rho proteins from several pathogenic bacteria revealed the conservation of this Psu-docking site which led us also to propose that Psu may function as an inhibitor of these Rho proteins.

Publications

1. Chalissery J, Muteeb G, Nisha CK, Mohan S, Jisha V and Sen R (2011). Interaction surface of the transcription terminator Rho required to form a complex with the C-terminal domain of the antiterminator NusG. Journal of Molecular Biology 405: 49-64.
2. Kalyani BS, Muteeb G, Qayyum MZ and Sen R (2011). Interaction with the nascent RNA is a pre-requisite for the recruitment of Rho to the transcription elongation complex in vitro. Journal of Molecular Biology 413: 548-560.
3. Swapna G, Chakraborty A, Kumari V, Sen R and Nagaraja V (2011). Mutations in β ' subunit of E. coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance. Molecular Microbiology 80: 1169-1185.

Figure 2

Future plans

The following projects are being and will be pursued in our lab in the next one year. i) Role of NusA in Rho-dependent termination. ii) Importance of RhoRNA interactions in vivo. iii) Mechanism of NusG mediated stimulation of Rho. iv) Characterization of predicted Rho-binding proteins.
4. Shashni R, Mishra S, Kalayani BS and Sen R. Suppression of in vivo Rhodependent transcription termination defects: Evidence for kinetically controlled steps. Microbiology (In press).

LABORATORY OF CELL SIGNALLING

Investigating the Role of Inositol Pyrophosphates in Eukaryotic Cell Physiology

Principal Investigator	Rashna Bhandari
PhD Students	Swarna Gowri Thota
	Rathan Singh Jadav
	Manasa VL Chanduri
	Aushaq Bashir Malla
Other Members	LPadmavathi
	Ruth Manorama Ravoori
	Dharmika Kumar
	Somadri Ghosh
	CP Unnikannan
	Sayak Bhattacharya
Collaborators	Satish Kumar
	Sagar Sengupta
	Nagaraj Balasubramanian

Staff Scientist \& WT-DBT India Alliance Senior Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Scientist B
Technical Assistant
Project Senior Research Fellow
Project Junior Research Fellow
Project Junior Research Fellow
IUSSTF RISE Intern (Oct. 2011-Feb. 2012)
CCMB, Hyderabad
NII, Delhi
IISER, Pune

Objectives

Inositol pyrophosphates are derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. They include diphosphoinositol pentakisphosphate (PP$I P_{5}$, or $\left.I P_{7}\right)$ and bis-diphosphoinositol tetrakisphosphate $\left([P P]_{2}-I P_{4}\right.$ or $\left.I P_{8}\right)$, which are implicated in diverse biological functions, including vesicular trafficking, apoptosis, telomere length maintenance and osmotic regulation. We have earlier demonstrated that the beta phosphate group of inositol pyrophosphates can be transferred to prephosphorylated serine residues on proteins to form pyrophosphoserine. Pyrophosphorylation occurs on several proteins within the cell, including proteins involved in ribosome biogenesis and vesicular trafficking. 5PP-IP ${ }_{5}\left(\mathrm{IP}_{7}\right)$ is synthesised from inositol hexakisphosphate (IP_{6}) and ATP by $I P_{6}$ kinases, three isoforms of which are present in mammals (IP6K1, IP6K2 and IP6K3). IP6K1 knockout mice display low body weight compared with wild type mice, low insulin levels and defective spermatogenesis.

Our aim is to understand the biochemical link between protein pyrophosphorylation and cellular phenomena regulated by inositol pyrophosphates. We utilise S. cerevisiae, mammalian cell lines, and knockout mouse strains as model systems to investigate the signalling and metabolic pathways that are altered when inositol pyrophosphate levels
are perturbed. In particular, we focus on the following objectives:

1. Examine the role of inositol pyrophosphates in yeast ribosome biogenesis;
2. Understand the cellular functions of mammalian inositol hexakisphosphate kinase 1;
3. Study the role of inositol pyrophosphates in whole animal physiology.
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
We observed that S. cerevisiae strains lacking the I_{6} kinase kcs1 display slow growth, sensitivity towards antibiotics that inhibit ribosome function, have reduced levels of ribosomes, and lower rates of protein synthesis. Steady state levels of 35S precursor rRNA, and the incorporation of radiolabelled uracil into rRNA are substantially lowered in kcs1s yeast. Run-on transcription analysis demonstrated that the rate of rRNA transcription is reduced. Together, our data suggested that inositol pyrophosphates regulate ribosome biogenesis in yeast by participating in RNA polymerase I mediated transcription of rRNA.

To understand the role of IP_{7} in the regulation of mammalian physiology, we use mouse embryonic fibroblasts (MEFs) derived from IP6K1 knockout (KO) and wild type (WT) mice as a model system. IP6K1 KO MEFs have 70\% reduced levels of IP_{7} compared with WT MEFs. Analysis of gene
expression microarray data comparing WT and IP6K1 KO MEFs predicted that regulation of the actin cytoskeleton is altered in KO MEFs. We observed an altered pattern of polarised migration and slower spreading in IP6K1 KO MEFs plated on fibronectin coated surfaces, confirming that there is indeed a perturbation in actin cytoskeleton dynamics in fibroblasts lacking IP6K1.
Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
Project 1: Regulation of yeast ribosome biogenesis by IP_{7}
To determine the mechanism by which IP regulates rRNA transcription, we have examined the sequences of 14 subunits of yeast RNA polymerase I core complex and 9 accessory factors, and identified 5 proteins that contain acidic serine sequence motifs that may be pyrophosphorylated by IP_{7} (Figure 1). We expressed these proteins as GST-fusions in S. cerevisiae, and tested phosphorylation of the purified recombinant proteins using radiolabelled IP_{7} in vitro. RPA34, RPA43 and RPA190, subunits of RNA polymerase I , are phosphorylated by IP_{7}. We are currently conducting site directed mutagenesis to identify the site of IP_{7}-mediated pyrophosphorylation, and determine its effect on protein function.

Project 2: Cellular functions of mammalian inositol hexakisphosphate kinase 1 (IP6K1): Role of inositol pyrophosphates in homologous DNA recombination

In addition to examining signalling pathways altered
in IP6K1 KO MEFs that were revealed by gene expression microarray analysis, we have begun to study specific cellular functions of inositol pyrophosphates that may be biochemically linked with protein pyrophosphorylation. Specifically, we are examining the role of inositol pyrophosphates in the regulation of homologous DNA recombination in mammalian cells.

Several lines of evidence suggest that IP_{6} kinases may regulate DNA recombination. KCS1 was originally identified in a screen for suppressors of a hyper-recombination phenotype observed in pkc1a yeast, suggesting that IP_{7} may promote DNA recombination. To examine whether this phenomenon is conserved in mammals, we analysed WT and IP6K1- MEFs for their response to DNA damaging agents that cause double strand breaks.

Treatment of MEFs with hydroxyurea (HU) leads to replication stress, inducing double strand DNA breaks and triggering repair via homologous recombination (HR). We monitored HU treated wild type and knockout MEFs for cell cycle arrest and release during a 12 h period following drug removal. IP6K1/ cells arrest at the G1/S boundary to the same extent as IP6K1+/+ cells, indicating that checkpoint activation following DNA damage is intact in the absence of IP6K1 (Figure 2A). However, fewer knockout cells enter the S phase after HU removal. Conversely, a higher number of knockout MEFs are present in the hypodiploid (<GO) population, representing non-viable cells, after a 12 h recovery period. The RecQ family helicase BLM participates in HR-mediated DNA repair. BLM

Figure 1. Yeast RNA polymerase I proteins are pyrophosphorylated by $\mathbf{I P}_{7^{*}}$ (A) Schematic representation of RNA Polymerase I and associated factors bound to the rDNA promoter. UAF: Upstream activating factor; CF: Core factor; RNA Pol I: RNA polymerase I, composed of 14 subunits. Dashed arrows indicate potential IP ${ }_{7}$ substrate proteins that possess an acidic serine sequence motif. (B) GST or GST-tagged RNA Polymerase I or associated factors identified as potential substrates for IP_{7}-mediated pyrophosphorylation, were expressed in S. cerevisiae, immobilized on glutathione beads, incubated with radiolabelled IP_{7}, and resolved by NuPAGE; immunoblotting with a tag-specific antibody (left) and autoradiography to determine phosphorylation (right).
containing foci marking the sites of DNA damage were observed by confocal fluorescence microscopy (Figure 2B). These foci persist 6 h after HU removal in knockout, but not in wild type MEFs, indicating that HR-mediated DNA repair is initiated but incomplete in cells lacking IP6K1 (Figure 2B, C). To determine whether the role of IP6K1 in HR is dependent upon its inositol pyrophosphate synthesis activity, we stably expressed active and catalytically inactive forms of IP6K1 in IP6K1- MEFs. BLM foci persist after a 6 h recovery period following HU removal in cells expressing inactive IP6K1, but the number of foci were reduced in cells expressing active IP6K1
(Figure 2D), implying that inositol pyrophosphate synthesis by IP6K1 is required for HR-mediated repair of damaged DNA.

Data presented here reveal a role for inositol pyrophosphates synthesised by IP6K1 in HRmediated repair of double strand breaks in mammalian cells. At a mechanistic level, it is clear that IP6K1 is not required for cell cycle checkpoint activation or the initiation of HR following DNA damage, but participates in the successful completion of HR. Inositol pyrophosphates may regulate this process by binding or pyrophosphorylating one or more proteins involved

Figure 2. IP6K1 regulates homologous recombination in mammalian cells. (A) Cell cycle profiles of MEFs following HU treatment and recovery for the indicated time. Dot plots representative of two independent experiments show DNA content on the X axis against EdU incorporation on the Y axis; boxes mark cells in the <G0 (yellow), G0/G1 (blue), S (green), and G2/M (purple) phases of the cell cycle. Percentages of cells present in <G0 and S populations are indicated. (B) Immunofluoresence visualisation of BLM in MEFs of indicated genotypes following treatment with HU (0.5 $m M$) and recovery for the indicated time. (C) Quantitation of data in (B); bars represent mean $\pm S E$ ($n=80$). (D) Quantitation of BLM foci formation in nuclei following HU (0.5 mM) treatment of MEFs of indicated genotypes, and recovery for the indicated time; bars represent mean $\pm S E(n=90)$. * $p<0.0001$.
in HR. In the near future we will focus on identifying molecular targets that mediate the involvement of IP6K1 in HR. A manuscript outlining this work is currently in preparation.

Project 3: Physiological role of IP_{7} in mice: Regulation of mouse spermiogenesis by IP6K1
This is a new activity. This project aims to understand the role played by IP6K1 in spermatogenesis. We have established a colony of IP6K1 heterozygous mice and are breeding them to obtain wild type and knockout litter-mates. We have earlier shown that IP6K1 knockout male mice are infertile and have no mature spermatozoa in the epididymis (Bhandari et al., Proc. Natl. Acad. Sci., USA, 2008). Flow cytometry analysis of germ cells isolated from seminiferous tubules of wild type
and IP6K1\% mouse testes revealed that the loss of IP6K1 does not affect meiosis (Figure 3A). Round and elongated spermatids are present in IP6K1* mice testes, although the fraction of elongated spermatids is marginally reduced in IP6K1- compared with wild type testes. However, elongated spermatids isolated from IP6K1 knockout testes have misshapen heads, and absent or bent tails (Figure 3B). This may explain why there is no spermiation in IP6K1\% mouse testes, which is reflected in the absence of mature spermatozoa in the epididymis. We are presently characterising this defect in greater detail, and plan to investigate whether the spermiogenesis defect in IP6K1- male mice is linked to the role of IP_{7} in regulating actin cytoskeleton dynamics and DNA repair.

Figure 3. Abnormal spermiogenesis in IP6K1 knockout mice. (A) DNA content analysis of testicular cells from male mice of the indicated genotypes. Cell suspensions were labelled with propidium iodide and analysed by flow cytometry. Elongated spermatids (HC), round spermatids (1C), spermatogonia and testicular somatic cells (2C), and primary spermatocytes and G2 spermatogonia (4C) cell populations are indicated as a percentage of the total cell population. (B) Elongated spermatids isolated from seminiferous tubules of IP6K1+/4 and IP6K1/r mouse testes were stained with DAPI, and examined by confocal microscopy and DIC imaging to visualise the spermatid head and tail.

LABORATORY OF PLANT MICROBE INTERACTION
 Understanding Virulence Mechanisms of Xanthomonas Plant Pathogens and Interaction with Host Plants

Principal Investigator
Subhadeep Chatterjee
PhD Students
Other Members
Rikky Rai
Sheo Shankar Pandey
Raj Kumar Verma
Tanmoy Sarkar
Binod Bihari Pradhan
Narasimha Rao N
Sree Gowrinadh Javvadi
L Santhosh Kumar

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Aug. 2011)
Technical Officer
DBT Research Associate (Till Apr. 2012)
Project Junior Research Fellow
Project Junior Research Fellow (Since Sep. 2011)

Objectives

1. Identification and characterization of virulence factors of Xanthomonas;
2. Role of cell-cell communication in Xanthomonas colonization and virulence;
3. Function of protein secretion system in Xanthomonas and role in virulence;
4. Role of PAMP in pathogen recognition and plant defense response.
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
We are trying to understand the virulence mechanisms of important Xanthomonas pathogens like, Xanthomonas campestris pv. campestris (Xcc; a pathogen of crucifers), Xanthomonas oryzae pv. oryzae \& Xanthomonas oryzae pv. oryzicola (Xoo, Xola; pathogens of rice) and Xanthomonas axonopodis pv. citri (Xac; pathogen of citrus).
To understand the role of DSF in the virulence of Xanthomonas oryzae pv. oryzae, we have made mutants unable to synthesize DSF (rpfF mutants) and deficient in DSF sensing. DSF deficient rpfF mutant exhibited significant reduction in the biofilm thickness as compare to the wild type and mutant with the complementing clone. We are presently studying in more detail the dynamics of biofilm formation in Xoo using different cell-cell signaling mutants alone or in combination to see the contribution of these in this process.

Details of the progress made in the current reporting year (April 1, 2011 - March 31, 2012)

Project 1: Role of DSF in virulence of Xanthomonas oryzae pv oryzae
In Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, a secreted fatty acid signaling molecule known as diffusible signal factor (DSF) is required for virulence and growth on low iron medium. To identify other virulence associated traits that are regulated by DSF in this pathogen, we have performed microarray analysis of transcriptional changes between wild type and DSF deficient mutants of X. oryzae pv. oryzae (Figure 1). Expression of genes that encode secreted hydrolytic enzymes, motility and chemotaxis functions are negatively regulated by DSF while functions involved in adhesion and biofilm formation are positively regulated. Enzymatic assays for hydrolytic enzymes (Figure 2) as well as assays for chemotaxis, motility, attachment and biofilm formation corroborate these findings (Figure 3). These results demonstrate that in X. oryzae pv. oryzae, DSF mediated cell-cell signaling coordinates transition from solitary to biofilm lifestyle by promoting expression of attachment functions and negatively regulating expression of motility functions. This is in contrast to X. campestris pv. campestris, a pathogen of crucifers, wherein the DSF system positively regulates motility functions and negatively regulates biofilm formation. These results indicate that virulence associated functions can be regulated in a completely contrasting fashion by the same signaling system in very closely related bacteria.

Figure 1. DSF regulates diverse functions in \boldsymbol{X}. oryzae pv oryzae. Functional categorization of DSF regulated genes in X. oryzae pv. oryzae based on expression analysis by microarray and Real Time RT-PCR. Values on the Y - axis represent number of up and down regulated genes in the DSF deficient rpfF mutant in comparison to the wild type strain for each functional category.

Figure 2. Influence of DSF and growth condition on the synthesis of Type II effectors. (A) Cellulase, (B) xylanase and (C) lipase activities in the culture supernatants of X. oryzae pv. oryzae wild type (WT), rpfF and rpfF/CG8 (rpfF mutant with the complementing plasmid) strains represented by black, dotted and striped bar's grown to a density of $10^{9} \mathrm{cells} / \mathrm{ml}$ in rich (PS), Minimal (MM) and XOM2 (media mimicking Type III secretion) medium. (D) Representative picture of plates of CMC-cellulose stained with congo red for cellulase production well assay from culture supernatant of different strains of X. oryzae pv. oryzae (1) WT, (2) rpfF mutant, (3) rpfF/CG8 (rpfF mutant with the complementing plasmid), (4) rpfF mutant supplemented with $30 \mu \mathrm{M}$ of DSF and (5) T2SS mutant (Type II Secretion System). Holo zone around the wells indicates cellulase activity. Error bar's represent SD of mean activity from three independent experiments $(n=3)$. Statistically significant difference in activity by t - test for cellulase (A) **for p value $=$ or <0.001; xylanase (B) *for p values $=0.05-0.01$; lipase (C) * for p values $=0.05-0.01$.

Figure 3. DSF suppresses motility of \boldsymbol{X}. oryzae pv. oryzae. (A and D) rpfF mutants exhibit hyper motility on swim plates containing 0.1% agar-PS plates. (B) Addition of $30 \mu \mathrm{M}$ of DSF in the swim plates prior to inoculation, suppresses motility, as indicated by reduction of motility zone (white arrow's) in the WT as well as rpfF mutant strains. (C) Western blot analysis of whole cell lysate of different strains of X. oryzae pv. oryzae ($\mathrm{n}=3$), $1=\mathrm{WT}$ (Wild Type); 2= rpfF/CG8 (rpfF mutant harboring the complementing plasmid; $3=r p f F$ mutant, probed with anti-flagellin antibody. Arrow indicates 34 kDa band corresponding to flagellin (FliC). (D) Time course of swimming motility zones measured by different strains of X. oryzae pv. oryzae grown on 0.1% agar-PS plates. Error bar represents SD of mean motility diameter from three independent experiments $(n=9)$. ${ }^{*} P<0.00001$ indicates significance level of the motility diameter in t - test between the wild type (WT) strain and the rpfF mutant, after 48 hours of incubation.

We propose a model that elucidates the role of DSF-mediated cell-cell signaling in establishing colonization and subsequent infection in rice leaves by X. oryzae pv. oryzae (Figure 4). At low DSF levels, which corresponds to low cell densities of X. oryzae pv. oryzae before it enters rice leaves, chemotaxis and motility is activated. This facilitates X. oryzae pv. oryzae movement through chemotaxis towards hydathodal exudates. Initially, hypermotility in the absence of high DSF might promote spread of the pathogen in rice xylem vessels. Type II effectors are then released causing hydrolysis of plant cell walls which leads to nutrient release, promoting X. oryzae pv. oryzae growth. When high cell densities of X. oryzae pv. oryzae are reached, DSF levels also increase, promoting biofilm
formation by the synthesis of EPS and various adhesions such as XadA and YapH. Production of excess Type II effectors is also suppressed which prevent overgrowth of biofilms, which otherwise would lead to xylem blockage.
Project 2: Understanding the mechanism of biofilm formation and motility and virulence
We have previously isolated a novel adhesin of Xanthomonas, XadM, which is required for virulence and biofilm formation. In this study we have further characterize the expression and localization of XadM. Expression studies indicate that XadM is induced inside the plant (in planta) and is required for binding of Xanthomonas oryzae pv. oryzae to extracellular polysaccharide (EPS) and plant cell wall.

0 Type II effectors
 - YapH
 - XadA

Figure 4. A proposed model for DSF-mediated cell-cell signaling in \boldsymbol{X}. oryzae pv. oryzae. Low DSF levels, which correspond to low cell density, promotes chemotaxis and motility which facilitate entry of X. oryzae pv. oryzae in rice leaves through small openings called hydathodes. Flagella driven motility of X. oryzae pv. oryzae facilitate spreading of cells inside the rice xylem vessel (green block arrows). Type II effectors like cellulase, lipase, cellobiosidase and Xylanase hydrolyze plant cell wall for the release of nutrients and promote X. oryzae pv. oryzae growth inside xylem vessels (indicated by small black arrows). At high level, which corresponds to increase in cell density, DSF suppresses chemotaxis driven movement and promotes biofilm formation by the synthesis of EPS, adhesins (XadA, YapH). Excess production of type II effectors is suppressed by DSF to restrict overgrowth of biofilm colony which may lead to blockage of nutrient flow.

Publications

1. Li YR, Zou HS, Che YZ, Cui YP, Guo W, Zou LF, Chatterjee S, Biddle EM, Yang CH and Chen GY (2011). A novel regulatory role of HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola. Molecular Plant-Microbe Interactions 24: 1086-1101.
2. Almeida RPP, Killiny N, Newman KL, Chatterjee S, Ionescu M and Lindow SE. Contribution of rpfB to cell-to-cell signal synthesis, virulence, and vector transmission of Xylella fastidiosa. Molecular Plant-Microbe Interactions (In press).
3. Pradhan BB, Ranjan M and Chatterjee S . XadM, a novel adhesin of Xanthomonas oryzae pv. oryzae, exhibits similarity to Rhs family proteins and is required for optimum attachment, biofilm formation and virulence. Molecular Plant-Microbe Interactions (In press).
4. Rai R, Ranjan M, Pradhan BB and Chatterjee S. Atypical regulation of virulence associated functions by a Diffusible Signal Factor in Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions (In press).

LABORATORY OF CELL DEATH \& CELL SURVIVAL Molecular Mechanisms Controlling Cell Life and Death

\author{

Principal Investigator Maddika Subba Reddy
 | PhD Students | Neelam Rani |
| :--- | :--- |
| | PV Vivek Reddy |
| | G Narmadha Reddy |
| | Swapnil R Shinde |
| Other Members | Vimal Pandey |
| | K Sridhar |
| | J Kiranmai |
| | Nanci Rani |
| Collaborators | Murali D Bashyam |

}

Staff Scientist \& WT-DBT India
Alliance Intermediate Fellow
Junior Research Fellow
Junior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Aug. 2011)
Research Associate (Since Aug. 2011)
Project Junior Research Fellow
Project Junior Research Fellow
Technical Assistant
CDFD, Hyderabad

Objectives

1. To dissect the functional network of phosphatases regulating cell life and death;
2. To understand the role of E3 ubiquitin ligases involved in tumorigenesis.
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a lipid phosphatase, which antagonizes the cellular phosphotidylinosital-3 kinase (PI3K) signalling pathway and a well defined tumor suppressor that plays critical roles in cell survival, proliferation, and cell death. To understand the functional interactome of PTEN, we performed a tandem affinity purification using streptavadin agarose beads and S-protein agarose beads followed by mass spectrometry analysis. Our studies identified WWP2 (HECT-type E3 ubiquitin ligase) as one of the functional interacting partners of PTEN (Maddika et al., Nature Cell Biol. 2011; 13(6):728-33). The interaction of WWP2 and PTEN was confirmed both in vitro and in cultured cells by GST-pull down assay and co-immunoprecipitation experiments respectively. We demonstrated that WWP2 promotes PTEN polyubiquitination both in vivo and in vitro. In addition, knock down of WWP2 leads to an increase in PTEN levels, which correlates with decreased Akt phosphorylation and cell survival. By using a prostate cancer cell line model, we demonstrated that depletion of WWP2 by siRNA reduces cell proliferation, fails to support the anchorage independent growth and reduces tumor
growth in nude mice. Overall in this study, we have identified WWP2 as a novel functional E3 ubiquitin ligase for PTEN phosphatase.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
Project 1: Studies on the functional interactome of PTEN phosphatase
As PTEN is a very critical tumor suppressor and trivial changes in PTEN levels lead to susceptibility to malignancy, it is essential to define the regulatory mechanisms that control PTEN functions. Several studies have indicated that PTEN is regulated by multiple mechanisms either at the transcriptional or post translational level. PTEN expression is regulated by transcription factors such as p53, PPAR γ and egr-1 at the transcription level, whereas PTEN ubiquitination and phosphorylation regulate its protein levels and activity at the posttranslational level. In our work, we demonstrate that PTEN activity can be regulated through a direct protein-protein interaction.

To elucidate potential regulators of PTEN, we recently performed a tandem affinity purification using PTEN stable cell line and identified several PTEN associated proteins (Maddika et al., Nature Cell Biol. 2011; 13(6):728-33). We found PNUTS as one of the potential PTEN associated proteins. PNUTS (Protein phosphatase-1 nuclear targeting subunit), also called PPP1R10, CAT53 and p99, was originally isolated as a nuclear protein that forms a stable complex with PP1 α and PP1 γ in mammalian cells. PNUTS binds to PP1 and potently decreases the catalytic activity of PP1
towards exogenous substrates such as Retinoblastoma (Rb) protein in vitro, and reduced expression of PNUTS in mammalian cells affects cell viability. However, the exact function of PNUTS under normal and disease condition remains to be elucidated.

We demonstrated the interaction of PTEN with PNUTS by immunoprecipitating HEK-293T cell lysates using a PNUTS polyclonal antibody (Figure 1A). We also confirmed the direct interaction of PTEN and PNUTS by using in vitro GST-pull down assays. Our deletion mapping analysis suggested that PNUTS via its N -terminal TF2S domain interacts with the C2-domain of PTEN. We further tested whether PTEN and PNUTS co-localize in
the cell. PTEN is mainly localized in the cytoplasm with sparse nuclear localization. Interestingly, expression of full length PNUTS, but not Δ TF2S PNUTS leads to drastic re-localization of PTEN to the nucleus, where it co-localizes with PNUTS (Figure 1B). On the other hand, expression of PNUTS has no effect on PHLPP indicating the specificity of PNUTS-PTEN interaction. Collectively these data suggest that PNUTS sequesters PTEN in the nucleus by directly interacting with PTEN.

To further explore the effect of PNUTS on PTEN access to lipids at the membrane, we tested whether Akt signalling downstream of PTEN is affected when PNUTS levels are modulated in cells. Indeed, knockdown of PNUTS by specific siRNA

in HeLa cells resulted in decreased Akt phosphorylation (Figure 2A) followed by increased cellular apoptosis in a PTEN dependent manner (Figures 2B). To further test whether PNUTS influences cellular survival and growth and to establish its role as a proto-oncogene, we stably depleted PNUTS with short hairpin RNA (shRNA). Cells expressing PNUTS shRNA showed reduced cell proliferation (Figure 2C) and fail to support anchorage independent growth in soft agar assays (Figure 2D) compared with control shRNA
expressing cells. Conversely, stable expression of full length PNUTS but not \triangle TF2S PNUTS in normal BPH1 prostate epithelial cells enhanced the proliferation and the transforming ability of cells. Collectively these results indicate that PNUTS acts as a potential oncogene by sequestering PTEN.
Project 2: Studies on E3 ubiquitin ligases involved in cell survival and proliferation
E3-ubiquitin ligases play a critical role in the final step of the ubiquitination process by recruiting

Figure 2. PNUTS is a potential oncogene. (A) HeLa Cells were treated with control siRNA, PNUTS siRNA, PTEN siRNA, or a combination of PTEN siRNA and PNUTS siRNA, and the cell lysates were immunoblotted with indicated antibodies. (B) HeLa cells were transfected with the indicated siRNAs and the percentage of apoptosis was measured by using Annexin-V staining. (C) DU-145 cells stably expressing control shRNA or PNUTS shRNA were seeded and cell proliferation was measured by tryphan blue exclusion for 5 days. (D) Control shRNA or PNUTS shRNA expressing DU-145 stable cell lines were tested for anchorage independent growth in a soft agar colony assay. Viable colonies were counted after 3 weeks. Error bar indicates standard deviation ($n=3$), $P<0.01$; students t-test.
ubiquitin charged E2s, recognizing specific substrates, and mediating, or directly catalyzing, ubiquitin transfer to the substrates. The human ubiquitin system contains nearly 600 ubiquitin ligases of which several of them were classified as tumor suppressors or protooncogenes. In this project, we are interested in identifying the cellular substrates and the regulators for different E3 ligases during cell survival and proliferation. We have isolated interacting partners for HECT E3 ligases such as WWP2, WWP1 and HACE1. We were
able to successfully identify several novel associated proteins for these E3 ligases and are currently studying the functional significance of these newly identified interacting partners in controlling cell survival and proliferation.

Publication

1. Maddika S, Kavela S, Rani N, Palicharla VR, Pokorny JL, Sarkaria JN and Chen J (2011). WWP2 is an E3 ubiquitin ligase for PTEN. Nature Cell Biology 13: 728-733.

LABORATORY OF DROSOPHILA NEURAL DEVELOPMENT

Understanding Patterning and Development of Central Nervous System using Drosophila melanogaster

Principal Investigator	Rohit Joshi
PhD Students	Risha Khandelwal Other Members Ghosh
	P Kalyani
	V Sruthakeerthi
	Ankush Auradhkar

Staff Scientist \& WT-DBT India
Alliance Intermediate Fellow
Junior Research Fellow
Junior Research Fellow (Since Feb. 2012)
Technical Officer I
Project Assistant
Project Assistant (Since Nov. 2011)

Objectives

The key objective of the project is to understand how neural progenitor cells attain their positional identity in the developing Central Nervous System (CNS) of an organism, and how this translates into generation of a variety of cell types found in the CNS (as represented in Figure 1). The Hox family of transcription factors are known to play an important role in giving positional identity to the cells and in generation of a variety of cell types along the AP axis of the CNS during development. The molecular basis of this phenomenon is not well investigated. We are interested in understanding the molecular basis of Hox function in patterning the CNS using Drosophila melanogaster as our model organism, focusing mainly on early embryonic and late larval stages of development. To this end, the specific aims are
as follows:

1. Understanding the molecular function of Hox gene Abdominal-A (Abd-A) in larval CNS patterning;
2. Understanding the role of Hox gene Deformed (Dfd) in patterning of embryonic subesophageal ganglia.
Summary of work done until the beginning of this reporting year (upto March 31, 2011)
3. Understanding the molecular function of Hox gene Abdominal-A (Abd-A) in larval CNS patterning
The abdominal region of the Drosophila larval CNS has a lower number of neurons compared to its thoracic counterpart. Hox gene Abd-A in known to cause programmed cell death (apoptosis) of neural

Figure 1. Early embryonic CNS comprises of an equivalent population of neural progenitor cells (shown in red circles) which start to express specific Hox genes and therefore acquire specific positional identity (represented by different colored circles). These cells generate a variety of different cell types in both embryonic and larval CNS.
progenitor cells (also called Neuroblasts-Nbs) and therefore limit the number of neurons in the abdominal region of the CNS.

The precise molecular details of how $A b d-A$ cause Nb apoptosis are unknown. Genetic evidence suggests a role for a helix-loop-helix transcription factor Grainyhead (Grh) along with Abd-A in control of this apoptosis. Characterization of the molecular basis of this link is the primary goal of this project. There are three apoptotic genes in Drosophila (hid, grim and reaper). A genetic deficiency spanning all the three genes prevents apoptosis of Nbs in the abdominal region of the larval brain. Amongst the three, reaper (rpr) was selected for further analysis since a 600bp regulatory region of rpris suggested to express the rpr gene in embryonic Nbs. The central hypothesis is that Abd-A and Grh cause Nb apoptosis through direct activation of rpr. A Drosophila-E. colishuttle vector (pCasPer-nls-lacZ) with a reporter gene β-galactosidase was used to clone the embryonic Nb specific 600bp rpr enhancer to check its expression in larval abdominal Nbs. Transgenic lines were made using this shuttle vector.
2. Role of Hox gene Deformed (Dfd) in patterning of embryonic subesophageal ganglia

Hox genes express in the CNS (in neural progenitor cells) in embryonic stages of development (as represented in Figure 1) but how their expression patterns the embryonic nervous system is not well understood. Deformed ($D f d$) is known to express in the cells of subesophageal ganglion of the embryonic CNS. This project focuses on understanding auto-regulation of Dfd in this region and finding out how this helps in giving cells their specific positional identity. This is being done by using a 630bp long auto-regulatory CNS specific enhancer for Dfd which recapitulates the expression of Dfd gene in the developing embryonic CNS. The 630bp enhancer is suggested (but not conclusively tested) to express in progenitor cells of the CNS and has potential binding sites for Dfd and known Hox cofactors like Extradenticle (vertebrate homolog being Pbx) and Hth (vertebrate homolog being Meis). These cofactors are also homeodomain containing transcription factors and their role in autoregulation of Dfd gene needs to be tested. A Drosophila-E.coli shuttle vector with pCasPer-nls-lacZ was used to clone the CNS specific 630bp autoregulatory enhancer of Dfd.

Transgenic lines were made to check its expression in specific cell types (especially Nbs) in subesophageal region of the embryonic brain. Simultaneously, protein expression was standardized for Dfd, Exd and Hth.
Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

1. Understanding the molecular basis of Hox gene Abdominal-A (Abd-A) in larval CNS patterning

A report in early 2011 (Tan et al., Development 2011) conclusively shows that grim instead of rpr is the gene primarily responsible for abdominal Nb apoptosis during larval stages of development. A systematic genetic analysis using chromosomal deficiency lines narrow down a 23 kb region of the genome which contains the grim enhancer responsible for its activation in abdominal Nbs (also called NBRR-Neuroblast Regulatory Region). These results have been helpful in redirecting the research plans and do not significantly affect the course of ongoing research, since the initial hypothesis that Grh and Abd-A interact together to result in apoptosis of abdominal Nbs is still valid and needs to be tested in context of the Nb specific grim enhancer.

Work is ongoing for the identification of the Nb specific grim enhancer by a systematic screening of the 23kb NBRR. The region has been divided into 4 overlapping fragments (of $8 \mathrm{~kb}, 10 \mathrm{~kb}, 8 \mathrm{~kb}$ and 8 kb each) that will be cloned into pCasPer$n / s-l a c Z$ reporter construct and enhancer-lacZ transgenic lines will be screened. These 4 fragments have been amplified by PCR from genomic DNA using region specific primers. The first 8 kb fragment has already been cloned into pCasPer-nls-lacZ shuttle vector and microinjections are being done for the same. The cloning work is ongoing for the rest of the three fragments. Simultaneously, a genetic approach is being taken to generate smaller deficiencies in the 23kb NBRR to identify the potential Nb specific enhancer of grim gene. A transposon line inserted in the beginning of the $2^{\text {nd }}$ fragment (10 kb region) is being crossed into a relevant background to be mobilized to cause imprecise excision of the transposon. The deficiencies thus obtained will be screened for their ability to prevent larval abdominal Nbs apoptosis. On identification of the Nb specific functional enhancer of the grim gene, in vitro and
in vivo experiments will be done to test the directness of Abd-A and Grh input in activation of grim to cause abdominal Nb apoptosis.

Since Grh is involved in Nb apoptosis and is not expressed in neuronal progeny refractory to this apoptosis, it is of interest to define grh regulation in these cells which keeps grh "on" in the Nbs and "off" in the neuronal progeny of Nbs. A 4kb enhancer of grh (referred to as grh4) is responsible for the neuroblast specific expression of the gene in CNS. This 4 kb region of grh is divided into 3 parts and being analyzed to identify the minimal enhancer which will recapitulate the expression of the gene in Nbs. All the three fragments have been subcloned into pCasPer-n/s-lacZ and the transgenic lines for fragment 1 and fragment 3 have been generated and are being balanced. These transgenic lines will be screened to check their capacity to drive the expression in Nbs. The functional enhancer for grh identified by this method will be used to understand the mechanism responsible for differential expression of grh gene in Nbs versus neurons.
2. Role of Hox gene Deformed in patterning of embryonic subesophageal ganglia

The 630bp Dfd autoregulatory element was scanned for Hox-Exd binding sites and two putative compound binding sites were identified for these two transcription factors. In vitro binding studies were done on these binding sites using EMSA and both the binding sites showed binding to Dfd-Exd heterodimer. In order to investigate the in vivo relevance of these binding sites, these sites were mutagenized in the 630bp DNA element and these various mutagenized forms of the enhancers have been sub-cloned into the pCasPer-nls-lacZ shuttle vector and the transgenic lines are being made for the same. These transgenic lines will be tested for their capacity to activate the reporter β-galactosidase to test the relevance of the binding site and a direct role of these transcription factors in auto-regulation of Dfd gene. Reagents are also being generated to test the activity of the enhancerlacZ in background mutants for known Hox cofactors like Exd and Hth.

LABORATORY OF CELL CYCLE REGULATION
 Elucidating the Role of Effector Proteins in G1 to S Phase Progression

\author{

Principal Investigator Shweta Tyagi
 \begin{tabular}{ll}

PhD Students \& | Aamir Ali |
| :--- |
| Zaffer Ullah Zargar |
| Swathi Chodisetty |

\& Swat
\end{tabular}
 Other Members VN Sailaja
 G Ashwini Kumar
 Manjari Mulukutla

}

Staff Scientist \& Ramalingswamy Fellow
Junior Research Fellow
Junior Research Fellow
Junior Research Fellow (Since Aug. 2011)

Technical Officer II
Project Associate (Till Nov. 2011)
Project Assistant (Since Feb. 2012)

Objectives

1. Identification of new effector proteins involved in regulation of E2F-responsive promoters;
2. Study of chromatin modifying proteins in cell cycle regulation.

Summary of work done until the beginning of this reporting year (Upto March 31, 2011)

To proliferate, eukaryotic cells have to complete an ordered series of events called the 'cell cycle', which include the faithful replication of their genome and the correct segregation of the two copies generated into two daughter cells upon cell division. A disruption of these events may lead to cell death or oncogenic transformation. The processes of cell cycle, therefore, are carefully regulated. We have previously shown that HCF-1 is an important regulator of G1 to S-phase transition and plays a direct role in the activation of E2F-responsive promoters through the cell-cycle-specific recruitment of the MLL-family of H3K4 histone methyltransferases. While this work has added new effectors to G1 to S-phase transition, how E2Fs affect passage into S phase is still poorly understood. In this project we aim to identify new effector proteins involved in regulation of E2Fresponsive promoters and better understand how these effectors influence transcriptional regulation during G 1 to S phase progression.

Epigenetic marks such as DNA methylation and histone modifications are either precisely transmitted to the daughter cells or dynamically changed during cell cycle. Indeed, some histone modifications are intimately linked with specific cellcycle phases. Histone 3 lysine 4 trimethylation is linked to active gene expression, but its precise role in cell cycle regulation is now being uncovered.

We have shown that MLL-family of H3K4 histone methyltransferases is linked to cell cycle regulation by interacting with E2F1. In this project, we are looking at other roles of this chromatin-modifying complex that may influence cell cycle regulation.

Details of the progress made in the current reporting year (April 1, 2011 - March 31, 2012)
Project 1: Identification of new effector proteins involved in regulation of E2Fresponsive promoters
A key step in the eukaryotic cell cycle is the G1 to S phase transition and this step is tightly coupled to the transcriptional control of genes involved in growth and DNA replication. In mammalian cells, the E2F family of transcription factors primarily controls this temporal gene expression regulation. After two decades of research, how E2Fs affect passage into S phase is still poorly understood. Here, we aim to identify new effector proteins involved in regulation of E2F-responsive promoters.

We will take a candidate based approach to look for effector proteins. A key methodology in this project is cell synchronization. In order to harvest cells in a particular cell cycle phase, we synchronized Hela cells using double thymidine block and harvested cells every two hours after release into normal media. The DNA content of propidium iodide-stained cells was analyzed by flow-cytometry and the percentage of cells in a particular cell cycle phase was determined. Repeat experiments gave us the time points that we could use to harvest cells in G1/S, S, G2/M, early G1 and late G1 phase (see Figure 1A). We will use the synchronized cells later in the project to look at specific binding of our protein of interest to E2Fresponsive promoters using Chromatin immunoprecipitation (ChIP).

In order to assess if our protein of interest associates with E2F-responsive promoters, we will make use of three well-characterized E2F-regulated promoters namely p107, E2F1 and cyclin A. As negative control, we will use a region from U2 snRNA gene- $\mathrm{U} 2_{\mathrm{c}}$. To initiate our studies, we standardized ChIP for immunoprecipitation against E2F1 and E2F4 antibody followed by qPCR
(Figure 1B). Pre-immune IgG and water were used as negative controls for ChIP and qPCR, or qPCR respectively. Consistent with previous reports, our results showed that both E2F1 and E2F4 bind to p107 promoter in asynchronous cultures. We will now use antibodies specific to our protein of interest to perform ChIP experiments.

Figure 1. Cell synchronization and Chromatin immunoprecipitation. (A) Cells were synchronized using double thymidine block and harvested after timed release into normal media. FACS profiles of G1/S, S, G2/M, earls G1 and late G1 are shown. (B) Quantification of E2F1 and E2F4 ChIP analyses of HeLa cells by triplicate Real-time PCR of p107 promoter is shown. The relative units (X axis) show enrichment as compared to input.

Project 2: Study of chromatin modifying proteins in cell cycle regulation.
To decipher the role of histone 3 lysine 4 trimethylation in cell cycle regulation, we will make use of siRNA to deplete specific members of MLL family of H3K4 HMT. All members of mammalian MLL family form protein complexes with at least three common structural components, RbBP5, Ash2L and WDR5 along with the catalytic subunit that harbors the SET domain (Figure 2A). We have initiated our studies by selectively knocking down WDR5, which is well-characterized and a universal component of H3K4 HMT complexes. To knock
down WDR5, we made use of siRNA pool consisting of four siRNAs specific to WDR5. As a control, we used siRNA directed against luciferase gene (Luc), which is absent in mammalian cells. These siRNAs were transfected in mammalian cell lines U2OS using a polycationic lipid-based reagent. 72 hours later, we harvested the cells and analyzed them for loss of WDR5 protein by sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by immunoblot. As shown in Figure 2B, we were able to knock down WDR5 efficiently in 72 hours post-transfection. We will now look for cell-cycle specific defects arising due to loss of WDR5 protein.

Figure 2. Components of Histone 3 lysine 4 histone methyltransferase (H3K4 HMT). (A) Each Set1 homolog exists as a multi-protein complex containing a minimum of SET domain containing protein and Ash2L, RbBp5 and WDR5 subunits. Together, this complex trimethylates lysine 4 of histone 3. (B) U2OS cells were treated with Luciferase and WDR5 siRNA and harvested 72 hrs later. Whole cell lysate immunoblots stained with WDR5 and tubulin antisera are shown.

अन्य वैज्ञानिक सेवाएँ / सुविधाएँ Other Scientific Services / Facilities

LABORATORY ANIMAL FACILITY

Faculty Co-ordinators Rashna Bhandari
Sanjeev Khosla
Other Members
Jayant P Hole
Suman Komjeti

Staff Scientist
Staff Scientist
Officer-in-Charge
Technical Assistant

Objectives

1. Establish a Laboratory Animal Facility for CDFD scientists who wish to use rodent models in their research;
2. Maintain inbred and transgenic strains of mice in a controlled environment, as per CPCSEA guidelines;
3. Assist users in procuring rodents for research, and conducting IAEC approved procedures.
Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

Although CDFD was established more than 15 years ago, and is now a recognised centre for basic life science research, a laboratory animal facility was not available to its researchers. An animal facility is necessary to support biological research in areas, such as immunology, cancer biology, cell biology, genetics, infectious disease, etc., and enables such research to meet internationally accepted standards. Given CDFD's current geographical constraints, it was not possible to construct a laboratory animal facility in our present temporary campus building. Therefore, it was decided to invite proposals from experienced and reputed companies, operating a laboratory animal facility located in Hyderabad, to provide animal experimentation services to the scientific staff of CDFD.

Based on a two bid tendering system, M/s Vimta Labs Limited, located at Genome Valley, Shameerpet, Hyderabad was selected to provide laboratory animal experimentation services to CDFD. Services provided by M/s Vimta Labs include the provision of 5 rooms suitable for animal experimentation exclusively for CDFD to house at least 500 individually ventilated cages (IVCs) for rodents; common utilities including, animal feed, bedding, cage washing and sterilization; necropsy, quarantine and euthanasia rooms; maintenance of
a light, temperature, sound and humidity controlled environment; and an experienced veterinarian to provide veterinary care to laboratory rodents. All animals kept in this facility and reagents generated therein are considered the sole property of CDFD.

Following the decision to establish a Laboratory Animal Facility within the premises of M/s Vimta Labs Ltd., CDFD recruited two personnel to set up and operate this facility. From July 1, 2011, CDFD started its activities at the Laboratory Animal Facility, beginning by establishing colonies of two transgenic mouse strains (Figure 1). Infrastructure was established to house mice in IVCs (Figure 2, 3), and conduct standard experimental procedures (Figure 4). All procedures, conducted on animals housed in this facility, are approved by the Institutional Animal Ethics Committee (IAEC) constituted by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment and Forests, Govt. of India, at M/s Vimta Labs Ltd.

Currently, this facility houses approximately 150 mice of each transgenic strain, IP6K1 and Nnat. Procedures conducted on these animals include blood collection for measurement of biochemical parameters, embryo collection for the preparation of mouse embryonic fibroblasts, tail biopsies for genotyping analysis, and necropsy for histopathological analysis.

Future directions

In the near future, apart from further research being carried out on the two transgenic strains, we will obtain additional transgenic strains, and procure C57BL/6, BALB/c and FOXN1 ${ }^{\text {nu }}$ mouse strains to expand our experimental activities. We aim to generate antibodies in mice against recombinant proteins being studied by several different investigators at CDFD. Tumourigenesis studies using Athymic Nude Mice and fungal pathogenesis studies using mice as model organisms are also planned.

Figure 1

Figure 3

Figure 2

Figure 4

Figure 1. Transgenic female mouse with new-born pups. Figure 2. Individually ventilated caging system with air handling unit, cage racks, and cages with identification tags. Figure 3. Laboratory animal facility staff working at a cage changing station to transfer mice to clean sterile cages. Figure 4 . Small laboratory equipment used in a procedure room adjacent to the animal rooms.

BIOINFORMATICS

Scientist-in-Charge
Other Members

H A Nagarajaram
R Chandra Mohan
Prashanthi Katta

Staff Scientist
Technical Officer I Technical Assistant (CoE)

Objectives

1. To maintain the CDFD website, provide web based services and e-mail services;
2. To maintain various servers, workstations, PCs, printers and other peripheral devices;
3. To maintain Institute-wide LAN as well as the internet connectivity;
4. To coordinate the procurement process of workstations, PCs, laptops, printers, other peripheral devices and software required;
5. To secure the CDFD network from security threats;
6. To integrate Institute's network into National and International grid computing networks.

Summary of work done until the beginning of this reporting year (April 1, 2010 - March 31, 2011)

* Activities related to installation, administration and maintenance of servers which provide various services, databases and computational jobs were undertaken.
* A comprehensive PC Annual Maintenance Contract and the agreement for remote monitoring and managed services for Sun servers in the Data Center set up were renewed.
* Successfully migrated CDFD Network to NKN.
* Signed a new MoU with CDAC for availing GARUDA-grid facility.

Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)

* Activities related to installation, administration and maintenance of servers which provide various services, databases and computational jobs were undertaken.
* Internet, web services were provided with enhanced functionalities.
* High-end PCs, workstations, laptops, scanners and printers were procured and installed.
* Existing PC Annual Maintenance Contract was renewed. Remote monitoring and managed services for Sun servers in the Data Center were also renewed.
* Procured a dedicated, high-end server with 3TB storage capacity for E-mail facility. Migrated existing email server to Zimbra Email server. The migration was done with minimum downtime.
* Upgraded 4Mbps leased line from BSNL to 8Mbps.
* Proposal from NIC-DBT for the deployment of IPv6 was initiated.

INSTRUMENTATION

Head
Other Members

Raghavendrachar J
R N Mishra
S D Varalaxmi
M Laxman
RMK Sathyanarayana
T Ramakrishna Reddy

Staff Scientist
Technical Officer II
Technical Officer I
Technical Officer I
Technical Officer I
Technical Assistant

Objective

To maintain, repair and service all the equipment in the Laboratory. To provide pre-installation requirements for new instruments and to coordinate with the manufacturers/ their agents in installation and warranty service of the new instruments. Also to provide reports on the newly arrived instruments and to follow up with suppliers for short shipped items.
Summary of work done until the beginning of the reporting year (April 1, 2010 - March 31, 2011)

We had set up the facilities for major instruments like ABI Solid 3.5 Next Generation whole Genome DNA Sequencer, Illumina Bead Express Whole Genome Genotyping System, Becton Dickinson FACS ARIA Flow Cytometer, Waters HPLC, Perkin Elmer Packard 2910 Liquid Scintillation Counter, Nikon Live Cell Imaging System, Nikon Stereomicroscope with Microinjection system and Conviron Plant Growth Chambers.

During the year 2010-11, we installed 138 new equipments and also completed 412 work orders for repair and maintenance of various laboratory equipments. We had successfully set up the video conferencing system to communicate and make presentations from CDFD to other institutions in India and abroad. In addition, we were involved in organizing the audio and visual requirements for presentations in various seminars, lectures and workshops, distinguished Scientist lectures etc. We were actively involved in conducting the $14^{\text {th }}$ Transcription Assembly Meeting, Indo-Canada

Tuberculosis Workshop and Indo-French Bioinformatics Meeting.
Details of progress made in the current reporting year (April 1, 2011 - March 31, 2012)
During the year 2011-12, we have installed 144 new equipments like Beckman High Speed Centrifuge, Hitachi Spectrofluorimeter, Robotic Protein Crystallization System, Accuri C6 Flowcytometer, Two Color IR Imaging System, Individually Ventilated Cages for Animal house, Microscopes, PCR Machines, Nanodrop Spectrophotometers, Refrigerated Centrifuges, Orbital Shakers, Electroporators, $-80^{\circ} \mathrm{C}$ Freezer, $-20^{\circ} \mathrm{C}$ Freezers, cold cabinets etc., and have also completed 472 work orders for repair and maintenance of various laboratory equipments. We have successfully set up the ID card printing system for issuing identity cards instantly to all our staff, research scholars, and project staff.
In addition, we are conducting basic course on instrumentation and imparting theory as well as practical knowledge on the equipments. We were involved in organizing the audio and visual requirements for presentations in various seminars, lectures and workshops, Foundation Day lecture series, distinguished Scientist lectures held in CDFD. We were actively involved in conducting the Ramalingaswamy Fellows' Conclave and DBT Silver Jubilee Lectures. We maintained most of the equipment with maximum uptime in the Laboratory. Most of the instruments are maintained by our Instrumentation staff, thereby saving on the expensive AMCs and with very little downtime of the equipment.

प्रकाशन
 Publications

RESEARCH PAPERS

A. Publications during the year 2011

1. Ali J, Paila U and Ranjan A (2011). ApicoAlign: An alignment and sequence search tool for apicomplexan proteins. BMC Genomics 12 (Suppl. 3): S6.
2. Anupama K, Leela JK and Gowrishankar J (2011). Two pathways for RNAse E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rhodependent transcription termination. Molecular Microbiology 82: 1330-1348.
3. Arora A, Chandra NR, Das A, Gopal B, Mande SC, Prakash B, Ramachandran R, Sankaranarayanan R, Sekar K, Suguna K, Tyagi AK and Vijayan M (2011). Structural biology of Mycobacterium tuberculosis proteins: The Indian efforts. Tuberculosis 91:456-468.
4. Arunkumar KP and Nagaraju J (2011). Drosophila intersex orthologue in the silkworm, Bombyx mori and related species. Genetica 139: 141-147.
5. Bairwa G and $\operatorname{Kaur} R$ (2011). A novel role for a glycosylphosphatidylinositol-anchored aspartyl protease, CgYps1, in the regulation of pH homeostasis in Candida glabrata. Molecular Microbiology 79: 900-913.
6. Bentur JS, Sinha DK, Padmavathy C, Revathy C, Muthulakshmi M and Nagaraju J (2011). Isolation and characterization of microsatellite loci in the asian rice gall midge (Orseolia oryzae) (Diptera: Cecidomyiidae). International Journal of Molecular Science 12: 755-772.
7. Borah S, Shivarathri R and Kaur R (2011). The Rho1 GTPase-activating protein CgBem2 is required for survival of azole stress in Candida glabrata. Journal of Biological Chemistry 286:34311-34324.
8. Bose S, Sakhuja P, Bezawada L, Agarwal AK, Kazim NS, Khan LA, Sarin SK and Ramakrishna G (2011). Hepatocellular carcinoma with persistent hepatitis B virus infection shows unusual downregulation of Ras expression and differential response to Ras mediated signaling. Journal of Gastroenterology and Hepatology 26: 135144.
9. Chalissery J, Muteeb G, Nisha CK, Mohan S, Jisha V and Sen R (2011). Interaction surface of the transcription terminator Rho required to form a complex with the Cterminal domain of the antiterminator NusG. Journal of Molecular Biology 405: 49-64.
10. Chatterjee N, Kiran S, Ram BM, Islam N, Ramasarma T and Ramakrishna G (2011). Diperoxovanadate can substitute for $\mathrm{H}(2) \mathrm{O}(2)$ at much lower concentration in inducing features of premature cellular senescence in mouse fibroblasts (NIH3T3). Mechanisms of Ageing and Development 132: 230-239.
11. Das A and Mukhopadhyay S (2011). The evil axis of obesity, inflammation and type-2 diabetes. Endocrine, Metabolic and Immune Disorders - Drug Targets 11: 2331.
12. Dutta UR, Rajitha P, Kumar PV and Dalal A (2011). Cytogenetic abnormalities in 1162 couples with recurrent miscarriages in southern region of India: Report and review. Journal of Assisted Reproduction and Genetics 28: 145-149.
13. Gunnarsdóttir ED, Nandineni MR, Li M, Myles S, Gil D, Pakendorf B and Stoneking M (2011). Larger mtDNA than Y chromosome differences between matrilocal and patrilocal groups from Sumatra. Nature Communications 2: 228.
14. Hegde S, Klimova E, Mande S, Medvedeva IA, Makeev V and Permina EA (2011). Using the operonic gene pairs for establishing the threshold correlation coefficient of differently expressed genes. Biofizika 56: 1062-1064. [Article in Russian]
15. Jailkhani N, Ravichandran S, Hegde SR, Siddiqui Z, Mande SC and Rao KVS (2011). Delineation of key regulatory elements identifies points of vulnerability in the mitogen-activated signaling network. Genome Research 21: 2067-2081.
16. Kalyani BS, Muteeb G, Qayyum MZ and Sen R (2011). Interaction with the nascent RNA is a prerequisite for the recruitment of Rho to the transcription elongation complex in vitro. Journal of Molecular Biology 413: 548-560.
17. Khanna V, Jain M, Barthwal MK, Kalita D, Boruah JJ, Das SP, Islam NS, Ramasarma T and Dikshit M (2011). Vasomodulatory effect of novel peroxovanadate compounds on rat aorta: Role of Rho kinase and nitric oxide/cGMP pathway. Pharmacology Research 63: 274-282.
18. Kole L, Giri B, Manna SK, Pal B and Ghosh S (2011). Biochanin-A, an isoflavon, showed anti-proliferative and anti-inflammatory activities through the inhibition of NOS expression, p38-MAPK and ATF-2 phosphorylation and blocking NF-kB nuclear translocation. European Journal of Pharmacology 653: 8-15.
19. Kumar CMS and Mande SC (2011). Protein chaperones and non-protein substrates: On substrate promiscuity of GroEL. Current Science 100: 1646-1653.
20. Kumar P, Chaitanya PS and Nagarajaram HA (2011). PSSRdb: A relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes. Nucleic Acids Research 39: D601-D605.
21. Kwei KA, Shain AH, Bair R, Montgomery K, Karikari CA, van de Rijn M, Hidalgo M, Maitra A, Bashyam MD and Pollack JR (2011). SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS One 6: e23924.
22. Li YR, Zou HS, Che YZ, Cui YP, Guo W, Zou LF, Chatterjee S, Biddle EM, Yang CH and Chen GY (2011). A novel regulatory role of HrpD6 in regulating hrp-hrc-hpa genes in Xanthomonas oryzae pv. oryzicola. Molecular Plant-Microbe Interactions 24: 1086-1101.
23. Maddika S, Kavela S, Rani N, Palicharla VR, Pokorny JL, Sarkaria JN and Chen J (2011). WWP2 is an E3 ubiquitin ligase for PTEN. Nature Cell Biology 13: 728-733.
24. Mahali S, Raviprakash N, Raghavendra PB and Manna SK (2011). Advanced glycation end products (AGEs) induce apoptosis via a novel pathway: Involvement of Ca^{2+} mediated by interleukin-8 protein. Journal of Biological Chemistry 286: 34903-34913.
25. Majumdar S, Dutta K, Manna SK, Basu A and Bishayi B (2011). Possible protective
role of chloramphenicol in TSST-1 and coagulase positive Staphylococcus aureus induced septic arthritis with altered levels of inflammatory mediators. Inflammation 34:268-281.
26. Manna SK, Gangadharan C, Edupalli D, Raviprakash N, Navneetha T, Mahali S and Thoh M (2011). Ras puts brake on doxorubicin-mediated cell death in p53 expressing cells. Journal of Biological Chemistry 286: 7339-7347.
27. Marbaniang CN and Gowrishankar J (2011). Role of ArgP (IciA) in lysine-mediated repression in Escherichia coli. Journal of Bacteriology 193: 5985-5996.
28. Mohammad TA and Nagarajaram HA (2011). A hierarchical approach to protein fold prediction. Journal of Integrative Bioinformatics 8: 185.
29. Mohareer K, Sahdev S and Hasnain SE (2011). Baculovirus p35 gene is oppositely regulated by P53 and AP-1 like factors in Spodoptera frugiperda. Biochemical and Biophysical Research Communications 414: 688-693.
30. Mrinal N, Tomar A and Nagaraju J (2011). Role of sequence encoded кB DNA geometry in gene regulation by Dorsal. Nucleic Acids Research 39: 9574-9591.
31. Mukhopadhyay S and Balaji KN (2011). The PE and PPE proteins of Mycobacterium tuberculosis. Tuberculosis 91:441-447.
32. Naik US, Gangadharan C, Abbagani K, Nagalla B, Dasari N and Manna SK (2011). A study of nuclear transcription factor-kappa B in childhood autism. PLoS One 6: e19488.
33. Nair S, Pandey AD and Mukhopadhyay S (2011). The PPE18 protein of Mycobacterium tuberculosis inhibits NF-кB/ rel-mediated proinflammatory cytokine production by upregulating and phosphorylating SOCS3 protein. Journal of Immunology 186: 5413-5424.
34. Ponnala R and Dalal A (2011). Partial monosomy 7q. Indian Pediatrics 48: 399401.
35. Reich D, Patterson N, Kircher M, Delfin F, Nandineni MR, Pugach I, Ko AMS, Ko YC, Jinam TA, Phipps ME, Saitou N,

Wollstein A, Kayser M, Paabo S and Stoneking M (2011). Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. American Journal of Human Genetics 89: 516-528.
36. Sahai I, Zytkowick T, Kotthuri SR, Kotthuri AL, Eaton RB and Akella RRD (2011). Neonatal screening for inborn errors of metabolism using tandem mass spectrometry: Experience of the pilot study in Andhra Pradesh, India. Indian Journal of Pediatrics 78: 953-960.
37. Saxena S and Gowrishankar J (2011). Modulation of Rho-dependent transcription termination in Escherichia coli by the H-NS family of proteins. Journal of Bacteriology 193:3832-3841.
38. Saxena S and Gowrishankar J (2011). Compromised factor-dependent transcription termination in a nusA mutant of Escherichia coli: Spectrum of termination efficiencies generated by perturbations of Rho, NusG, NusA, and H-NS family proteins. Journal of Bacteriology 193: 3842-3850.
39. Shamim MT and Nagarajaram HA (2011). SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids. Journal of Bioinformatics and Computational Biology 9: 489-502.
40. Sharadamma N, Khan K, Kumar S, Patil N, Hasnain SE and Muniyappa K (2011). Synergy between the N -terminal and C terminal domains of Mycobacterium tuberculosis HupB is essential for highaffinity binding, DNA supercoiling and inhibition of RecA-promoted strand exchange. FEBS Journal 278: 3447-3462.
41. Shukla JN, Jadhav S and Nagaraju J (2011). Novel female-specific splice form of $d s x$ in the silkworm, Bombyx mori. Genetica 139: 23-31.
42. Singh NP, Madabhusi SR, Srivastava S, Senthilkumar R, Neeraja C, Khosla S and Mishra RK (2011). Epigenetic profile of the euchromatic region of human Y chromosome. Nucleic Acids Research 39: 3594-3606.
43. Swapna G, Chakraborty A, Kumari V, Sen R and Nagaraja V (2011). Mutations in β^{\prime}
subunit of E. coli RNA polymerase perturb the activator polymerase functional interaction required for promoter clearance. Molecular Microbiology 80: 1169-1185.
44. Terenius O, ...(67 authors)..., Nagaraju J, Richard H, Herrero S, Gordon K, Swevers L and Smagghe G (2011). RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. Journal of Insect Physiology 57: 231-245.
45. Thiagarajan D, Dev RR and Khosla S (2011). The DNA methyltranferase Dnmt2 participates in RNA processing during cellular stress. Epigenetics 6: 103-113.
46. Thoh M, Babajan B, Raghavendra PB, Sureshkumar C and Manna SK (2011). Azadirachtin interacts with retinoic acid receptors and inhibits retinoic acid-mediated biological responses. Journal of Biological Chemistry 286: 4690-4702.
47. Yadav AK, Desai PR, Rai MN, Kaur R, Ganesan K and Bachhawat AK (2011). Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: Essential in C. glabrata, and essential for virulence in C. albicans. Microbiology 157: 484-495.
B. Publications in 2012 (Till March 31, 2012)
48. Acharya V and Nagarajaram HA (2012). Hansa: An automated method for discriminating disease and neutral human nsSNPs. Human Mutation 33: 332-327.
49. Akhter Y, Ehebauer MT, Mukhopadhyay S and Hasnain SE (2012). The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: Perhaps more? Biochimie 94: 110-116.
50. Bashyam MD, Purushotham G, Chaudhary AK, Rao KM, Acharya V, Mohammad TA, Nagarajaram HA, Hariram V and Narasimhan C (2012). A low prevalence of MYH7/MYBPC3 mutations among familial hypertrophic cardiomyopathy patients in India. Molecular and Cellular Biochemistry 360:373-382.
51. Dutta UR, Pidugu VK, Goud V and Dalal AB (2012). Mosaic Down syndrome with a marker: Molecular cytogenetic
characterization of the marker chromosome. Gene 495:199-204.
52. Hegde SR, Rajasingh H, Das C, Mande SS and Mande SC (2012). Understanding communication signals during Mycobacterial latency through predicted genome-wide protein interactions and boolean modeling. PLoS One 7: e33893.
53. Kumar R, Panigrahi I, Dalal A and Agarwal S (2012). Sickle cell anemia - Molecular diagnosis and prenatal counseling: SGPGI experience. Indian Journal of Pediatrics 79: 68-74.
54. Mukhopadhyay S, Nair S and Ghosh S (2012). Pathogenesis in tuberculosis: Transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiology Reviews 36: 463-485.
55. Pidugu VK, Pothula RKS, Narra D and Srivastava V (2012). Development of a multiplex Polymerase Chain Reaction method for specific detection of genetically modified cotton events MON 531 and MON 15985. International Journal of Basic and Applied Sciences 1:45-53.
56. Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A and Pollack JR (2012). Convergent structural alterations define SWItch/Sucrose NonFermantable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proceedings of the National Academy of Sciences of the USA 109: E252-E259.
57. Siddiq EA, Vemireddy LR and Nagaraju J (2012). Basmati rices: Genetics, breeding and trade. Agricultural Research 1:25-36.
C. Publications in Press (as on March 31, 2012)
58. Almeida RPP, Killiny N, Newman KL, Chatterjee S, Ionescu M and Lindow SE. Contribution of rpfB to cell-to-cell signal synthesis, virulence, and vector transmission of Xylella fastidiosa. Molecular Plant-Microbe Interactions.
59. Angalena R, Aggarwal S, Phadke SR and Dalal A. Compound heterozygote condition in beta thalassemia major due to a novel single nucleotide deletion $(-T)$ at codon 69
in association with IVS 1-5 (G>C) mutation. International Journal of Laboratory Hematology.
60. Bashyam MD, Chaudhary AK and Bhat V. The IVS2+837T>G appears to be a relatively common 'rare' β-GLOBIN gene mutation among β-Thalassemia patients in the South Indian state of Karnataka. Hemoglobin.
61. Bashyam MD, Chaudhary AK, Reddy EC, Reddy V, Acharya V, Nagarajaram HA, Devi ARR, Bashyam L, Dalal AB, Gupta N, Kabra M, Agarwal M, Phadke SR, Tainwala R, Kumar R and Hariharan SV. A founder ectodysplasin A receptor (EDAR) mutation results in a high frequency of the autosomal recessive form of hypohidrotic ectodermal dysplasia in India. British Journal of Dermatology.
62. Bhat KH, Chaitanya CK, Parveen N, Varman R, Ghosh S and Mukhopadhyay S. Proline-Proline-Glutamic Acid (PPE) protein Rv1168c of Mycobacterium tuberculosis augments transcription from HIV-1 Long Terminal Repeat promoter. Journal of Biological Chemistry.
63. Fialho AM, Salunkhe P, Manna SK, Mahali S and Chakrabarty AM. Glioblastoma multiforme: Novel therapeutic approaches. ISRN Neurology.
64. Kumar P and Nagarajaram HA. A study on mutational dynamics of simple sequence repeats in relation to mismatch repair system in prokaryotic genomes. Journal of Molecular Evolution.
65. Manna SK. Double-edged sword effect of biochanin to inhibit nuclear factor kappaB: Suppression of serine/threonine and tyrosine kinases. Biochemical Pharmacology.
66. Muranjan M, Agarwal S, Lahiri K and Bashyam M. Novel biochemical abnormalities and genotype in Farber disease. Indian Pediatrics.
67. Padma Priya T and Dalal AB. Tuberous sclerosis: Diagnosis and prenatal diagnosis by MLPA. Indian Journal of Pediatrics.
68. Patil SJ, Ponnala R, Shah S and Dalal A. Mosaic Trisomy 9 presenting with congenital heart disease, facial dysmorphism and pigmentary skin lesions: Intricate issues of genetic counseling. Indian Journal of Pediatrics.
69. Ponnala R, Ranganath P, Dutta UR, Pidugu VK and Dalal AB. Phenotypic and molecular characterization of partial trisomy $2 q$ resulting from insertion-duplication in chromosome 18q: A case report and review of literature. Cytogenetic and Genome Research.
70. Pradhan BB, Ranjan M and Chatterjee S. XadM, a novel adhesin of Xanthomonas oryzae pv. oryzae, exhibits similarity to Rhs family proteins and is required for optimum attachment, biofilm formation and virulence. Molecular Plant-Microbe Interactions.
71. Rai R, Ranjan M, Pradhan BB and Chatterjee S. Atypical regulation of virulence associated functions by a Diffusible Signal Factor in Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions.
72. Ramasarma T, Joshi NV, Sekar K, Uthayakumar M and Sherlin D. Transmembrane domains. eLS (formerly known as Encyclopedia of Life Sciences).
73. Ramasarma T. A touch of history and a peep into the future of the lipid-quinone known as coenzyme Q and ubiquinone. Current Science.
74. Ramasarma T. In praise of $\mathrm{H}_{2} \mathrm{O}_{2}$, the versatile ROS, and its vanadium complexes. Toxicology Mechanisms and Methods.
75. Ranganath P, Sharma V, Danda S, Nandineni MR and Dalal A. Report of novel mutations in the lysosomal sialidase (NEU1) gene in Indian cases of sialidosis. Indian Journal of Medical Research.
76. Shashni R, Mishra S, Kalayani BS and Sen R. Suppression of in vivo Rho-dependent transcription termination defects: Evidence for kinetically controlled steps. Microbiology.
77. Singh CP, Singh J and Nagaraju J. A baculovirus-encoded miRNA suppresses its host miRNAs biogenesis by regulating the Exportin-5 co-factor Ran. Journal of Virology.
78. Verma PK, Dalal A, Mittal B and Phadke SR. Utility of MLPA in mutation analysis and carrier detection for Duchenne muscular dystrophy. Indian Journal of Human Genetics.
79. Verma PK, Ranganath P, Dalal A and Phadke SR. Spectrum of lysosomal storage disorders at medical genetics center in North India. Indian Pediatrics.
D. Other Publications

1. Dalal A (2011). Annual review of genomics and human genetics, 2010. (Book Review) Current Science 100: 933-934.
2. Dalal A (2011). Genetic tests. API Textbook of Medicine, $9^{\text {th }}$ Edition, Pg. 21-25. Editor-in-Chief: Munjal YP. Jaypee Brothers Medical Publications.
3. Gowrishankar J (2011). Funding of investigator-initiated research projects in India: The case for moving from a proposalbased to a performance-based evaluation process. Current Science 101: 823.
4. Gowrishankar J (2011). Why scientists are missing (Letter). Down to Earth (1 May 2011), Pg. 6.
5. Ranganath P and Dalal A (2012). Annual review of genomics and human genetics, 2011. (Book Review) Current Science 102: 923-924.
6. Gokul G and Khosla S. DNA methylation and cancer. Epigenetics: Development and Disease. Editor: Kundu TK. Springer Publications (In press).
7. Gowrishankar J. What should our policy be for appointing non-Indian citizens as heads of public institutions? Current Science (In press).
E. Patents
(i) Granted

Gowrishankar J and Nandineni MR. A microbial process for arginine production.

* Japanese Patent 4836440, issued on 7 October 2011.
(ii) Applications filed

Nagaraju J. Virus resistant transgenic silkworm.

* PCT International Application No. PCT/ IN2012/000083 filed on 2 February 2012.

मानव संसाधन विकास
 Human Resource Development

PhD Program

For the PhD program CDFD invites applications from highly motivated candidates willing to take up challenges in modern biology, usually in the month of March. Keeping in view the interdisciplinary nature of modern biology, the Centre especially encourages persons from different scientific disciplines to take up challenges in these areas. Those admitted as Junior Research Fellows (JRFs) are encouraged to take admission in the PhD program of Manipal Academy of Higher Education or University of Hyderabad.
The eligibility for the program is MBBS or Masters degree in any branch of Science, Technology or Agriculture from a recognized University or Institute. Candidates (other than MBBS graduates) must have cleared National Eligibility Test (NET) with valid CSIR-JRF or UGC-JRF or DBT-JRF or ICMR-JRF or ICAR-JRF or INSPIRE-Ph.D. or DAE-JEST or GATE (All India top 100 ranks of all the streams). Those who have appeared for their final semester examination, but are awaiting results, are also eligible to apply. Those with independent Senior Research Fellowships (SRF) from CSIR can also apply. As the number of applicants outnumbers the seats available each year by a ratio of $1: 40$ or more, eligible candidates are invited for a written examination followed by interviews of short-listed candidates.
CurrentlyB the Centre has 87 Research Scholars working for their doctorates in different areas of
research. In the reporting year 6 of the Research Scholars have completed PhD and are pursuing careers in science elsewhere in India or abroad.

Postdoctoral Program

In addition to the JRF program, the Centre also carries out training at the post-doctoral level. The post-doctoral fellows are funded through the extramural grants that CDFD receives. Some postdoctoral fellows are also selected competitively by the DST fast track young scientist scheme, or the DBT post-doctoral fellowship program.

Summer Training Program

CDFD provides admissions to summer training program only to those students who are supported either by the Indian Academy of Science, Bangalore or Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore or the Kishore Vigyanik Protsahan Yojna, New Delhi. In the reporting year 24 students received summer training at the Centre.

Training for students from BITS, Pilani

CDFD has an agreement with BITS, Pilani to provide project training to their M.Sc. students. Under this programme, the students spend 6 months to 1 year at CDFD and work on active projects being carried out here. The project work helps the students in gaining hands-on experience in modern biology. In the reporting year, 7 students were given the opportunity to avail training under this programme.
Research Scholars Conferred Ph.D Degree During the Reporting Period

Scholar	Supervisor	Date of viva voce examination	Title of thesis
Maikho Thoh	Sunil K Manna	06.06.2011	Understanding the mechanism of Azadirachtin-mediated cell signalling: Role in anti-inflammation and anti-tumorigenesis
Pramod Kumar	Shekhar C Mande	13.07.2011	Structural and functional study of the toxin-antitoxin modules in Mycobacterium tuberculosis
Jyoti Singh	J Nagaraju	18.07.2011	Identification and characterization of miRNAs and their targets for studying gene regulation and insect-pathogen interaction in the domesticated silkworm, Bombyx mori
Vishal Acharya	H A Nagarajaram	25.11.2011	Computational studies of disease-causing mutations in proteins
Arvind Singh	Gayatri Ramakrishna	29.11.2011	Studies on the functions of RAS in lung epithelium
Shivalika Saxena	J Gowrishankar	23.02.2012	Studies on transcription-translation coupling and the consequences of its failure in Escherichia coil: Modulation of Rho-dependent transcription termination by H-NS family of proteins

व्याख्यान, बैठक, कार्यशाला व अन्य महत्वपूर्ण कार्यक्रम

Lectures, Meetings, Workshops and Important Events

DISTINGUISHED VISITORS AND LECTURES

Visitor	Title of Lecture	Date
Dr Krishna Murari Sinha, Institute of Molecular Medicine, New Delhi	Multiple pathways of DNA double-strand break repair in mycobacterium	01.04 .2011
Dr Aswin Seshasayee, National Centre for Biological Sciences, Bangalore	Functional and comparative genomics of bacterial signaling and genome optimizations	20.04 .2011
Dr Srinivasa M Srinivasula, National Cancer Institute, NIH, USA	Autophagy in host defense:Role of p62 in TLR signaling	21.04 .2011
Dr Sourav Banerjee,	Micromanaging neuronal network: Regulatory University of California, USA microl of neuronal development and plasticity by	26.04 .2011
Dr Ravikumar Ponnusamy, University of California, USA	Training and taming fear memories in the mammalian brain: Neural pathways of fear development and reduction	06.06 .2011
Dr Shweta Suresh, National Centre for Biological Sciences, Bangalore	IndiaBioscience (IBS)-An initiative to strengthen life-sciences research in India	24.06 .2011
Dr Raghavendra Nidhanapati, Ohio State University, USA	EDGF/p75 and novel host proteins interacting with HIV-1 preintegration complex	29.06 .2011
Dr Milan Surjit, Institute of Genetics and Molecular and Cellular Biology, France	How do we respond to stress? A new insight into the mechanism of action of a stress hormone	01.07 .2011
Dr Nagaraj Balasubramanian, Indian Institute of Science	Adhesion dependent regulation of membrane Erafficking. Role in anchorage dependence Education and Research,	14.07 .2011
and cancer.		

Visitor	Title of Lecture	Date
Dr Upender Manne, University of Alabama at Birmingham, USA	Preclinical validation of molecular markers of colorectal cancer	08.12.2011
Prof Mark Stoneking, Max Planck Institute for Evolutionary Anthropology, Germany	Admixture signals in modern human populations from archaic genomes	13.12.2011
Prof Jagan Pongubala, University of Hyderabad, Hyderabad	Gene regulatory networks and chromatin dynamics controlling hematopoietic lineage differentiation	15.12.2011
Prof Rajagopal Ramesh, The University of Oklahoma Health Sciences Center, USA	Interleukin (IL)-24-based cancer therapy: Rationale for testing in the clinic	19.12.2011
Dr Tirumala Kumar Chowdary, Tufts University School of Medicine, USA	Passing the baton - Structure reveals regulatory role of $\mathrm{gH} / \mathrm{gL}$ complex in herpesvirus entry	09.01.2012
Dr Barnali Neel Chaudhuri, University of California, USA	Organization of the mycobacterial partition assembly	11.01.2012
Dr Dhirendra K Simanshu, Memorial Sloan-Kettering Cancer Center, USA	Molecular machineries involved in trafficking of signaling lipids and small RNA-mediated gene silencing	13.01.2012
Dr Rajakumara Eerappa, Memorial Sloan-Kettering Cancer Center, USA	Structural and biochemical basis for methylated DNA and histone codes read-out and interpretation by chromatin associated modular proteins	20.01.2012
Dr Dhruv K Sethi, Harvard Medical School, USA	Horror autotoxicus: T cell receptor recognition of self and foreign antigens	23.01.2012
Prof Sue Lin-Chao, Institute of Molecular Biology, Academia Sinica, Taiwan	The role of membrane binding in RNase E mediated RNA decay	24.01.2012
Prof Lothar H Wieler, Freie University, Germany	The EHEC enigma - Genes on the move	24.01.2012
Dr Purusharth Rajyaguru, University of Arizona, USA	To translate, remain silent or get destroyed: How are mRNA fate decisions made?	27.01.2012
Prof Martin Killias, University of Zurich Switzerland	Experimental research in criminology and criminal justice	02.02.2012
Prof Junjie Chen, The University of Texas MD Anderson Cancer Center, USA	DNA damage signaling and DNA repair	06.02.2012
Prof Toru Shimada, The University of Tokyo, Japan	Genetic and genomic studies on the food habits of the silkworm	24.02.2012
Prof Aseem Ansari, University of WisconsinMadison, USA	Chemical-genomic dissection of the CTD code of RNA polymerase II	05.03.2012
Prof Prabhat Arya, Institute of Life Sciences, Hyderabad	Going in for protein:protein interactions	29.03.2012

IMPORTANT EVENTS

Event	Partnering Institutions	Date
MoU between CDFD and Survey of India (Sol)	CDFD-Sol	12.04.2011
Handing over of campus and land between CDFD and Sol	CDFD-Sol	19.06.2011
Fire drill		21.06.2011 \& 22.06.2011
CDFD Research Area PanelsScientific Advisory Committee (RAP-SAC) Meeting		29.07.2011 \& 30.07.2011
Independence Day celebrations		15.08.2011
MoU between CDFD, Govt. of Orissa and Institute of Life Sciences (ILS), Bhubaneswar		18.08.2011
Commemoration of Hindi week		09.09.2011 to 14.09.2011
CDFD Building Committee Meeting		13.10.2011
CDFD Finance Committee Meeting		13.10.2011
CDFD Governing Council Meeting		17.10.2011
Visit of delegation from Academia Sinica, Taiwan		01.11.2011
CDFD Society Meeting		22.11.2011
Dr Salam Khan Memorial Lecture	CDFD \& University of Hyderabad	24.01.2012
Republic Day celebrations		26.01.2012
Commemoration of DBT Silver Jubilee		February 2012
CDFD Foundation Day celebrations		11.02.2012
Ramalingaswami Fellows' Conclave	DBT \& CDFD	11.03.2012 to 14.03.2012
Hindi awareness workshop		16.03.2012

सी डी एफ डी कर्मचारियों की विदेशों में प्रतिनियुक्ति
 Deputations Abroad of CDFD Personnel

DEPUTATIONS ABROAD - FACULTY \& STAFF

Faculty	Period	Country of Visit and Purpose			
J Gowrishankar	10.05.2011 to 25.05.2011	France: Scientific Council and Industrial Research Committee meeting of the Indo-French Council for Promotion of Advanced Research (IFCPAR) and visit to various laboratories. USA: Meeting on "Molecular Genetics of			
Bacteria and Phages" at University of					
Wisconsin, Madison and visit to various					
laboratories.			$	$	JNagaraju
:---					

Faculty	Period	Country of Visit and Purpose
M D Bashyam	23.03 .2011 to 09.04.2011	USA: 102nd Annual Meeting of the American Association for Cancer Research (AACR) in Orlando and visit to various laboratories.
Rupinder Kaur	27.03 .2012 to 04.04.2012	USA: ASM Conference on Candida and Candidiasis at San Francisco.
Ashwin B Dalal	10.10 .2011 to 15.10.2011	Canada: Workshop on "Genetics in Developing Countries" organized by International Genetics Education Network (IGEN) at Montreal.
Rashna Bhandari	04.11 .2011 to 12.11.2011	USA: HHMI International Early Career Scientist 12.11.2011 Competition Symposium at Virginia and visit to various laboratories.
N Madhusudan Reddy	18.07 .2011 to 28.08.2011	Germany: Conduct research in Prof. Mark Stoneking's laboratory in Leipzig.
Subhadeep Chatterjee	22.05 .2011 to 27.05.2011	Italy: To attend course work on quorum sensing in Dr. Vittorio Venturi's laboratory at Tieste.
R Harinarayanan	10.08 .2011 to 29.09.2011	USA: Conduct research in the Laboratory of Molecular Genetics at the National Institute of Child Health and Human Development, NIH, Bethesda.
Payel Ghosh	21.07 .2011 to 24.07.2011	Russia: Indo-Russian Satellite MCCMB meeting on Computational Biology at Moscow.

DEPUTATIONS ABROAD - STUDENTS

Faculty	Period	Country of Visit and Purpose
Shubhada R Hegde	26.06 .2011 to 01.07.2011 and 02.07 .2011 to 08.07 .2011	Germany: $611^{\text {st }}$ Meeting of Nobel Laureates and students at Lindau followed by visit to various research institutes in Germany.
Carmelita N Marbaniang and Amitabh Ranjan	02.08 .2011 to 07.08.2011	USA: Conference on "Molecular Genetics of Bacteria and Phages".
S Divya Tej	21.09 .2011 to 23.09.2011	Spain: Conference on "Genomic Imprinting and Beyond".
Sidhartha Kumar Mahali	29.01 .2012 to 03.02.2012	USA: Conference on "Pathogenesis of Diabetes: Emerging Insights into Molecular Mechanisms".
Shashi Kiran	12.02 .2012 to 16.02.2012	USA: Conference on "Sirtuins in Metabolism, Aging and Disease".
Babul Moni Ram	19.03 .2012 to 24.03.2012	Canada: Conference on "Cell Death Pathways: Beyond Apoptosis".

$$
\begin{aligned}
& \text { सी डी एफ डी के } \\
& \text { वरिष्ठ वैज्ञानिक व अधिकारी } \\
& \text { Senior Staff and } \\
& \text { Officers of CDFD }
\end{aligned}
$$

SCIENTIFIC GROUP LEADERS (FACULTY)

Dr. J Gowrishankar
Dr. J Nagaraju
Dr. Shekhar C Mande (till August 2011)
Dr. Ranjan Sen
Dr. Sunil Kumar Manna
Dr. Sangita Mukhopadhyay
Dr. M D Bashyam
Dr. HANagarajaram
Dr. Akash Ranjan
Dr. Sanjeev Khosla
Dr. Gayatri Ramakrishna
Dr. Rupinder Kaur
Dr. Ashwin Bhikaji Dalal
Dr. Rashna Bhandari
Dr. Madhusudan R Nandineni
Dr. Subhadeep Chatterjee
Dr. Abhijit A Sardesai
Dr. R Harinarayanan
Dr. Shweta Tyagi
Dr. Rohit Joshi
Dr. M V Subba Reddy
Dr. Arun Kumar K P

ADJUNCT FACULTY

Prof. E A Siddiq
Prof. T Ramasarma
Prof. Anuradha Lohia
Dr. Renu Wadhwa
Dr. Prajnya Ranganath

OTHER GROUP LEADERS

Mr. Raghavendrachar J
Ms. M Kavita Rao
Dr. Ankkur Goel

SENIOR ADMINISTRATIVE STAFF

Mr. K Ananda Rao (till July 2011)
Mr. J Sanjeev Rao
Mr. B Jagannathacharyulu

केन्द्र की समितियाँ
 (31.03.2012 तक)
 Committees of the Centre

(As on 31.03.2012)

MEMBERS OF CDFD SOCIETY

Shri Pawan K Bansal

Hon'ble Minister for S\&T and Earth Sciences
Shri Vilasrao Deshmukh
Hon'ble Minister for S\&T and Earth Sciences
Prof M K Bhan
Secretary, DBT, New Delhi
Prof Samir K Brahmachari
Director General, CSIR, New Delhi
Prof P Balaram
Director, IISc, Bangalore
Prof V S Chauhan
Director, ICGEB, New Delhi
Prof Dipankar Chatterji
IISc, Bangalore
Shri Satish Chandra
Joint Secretary \& Legal Adviser
Ministry of Law, New Delhi
Shri S Suresh Kumar
Joint Secretary (PM)
Ministry of Home Affairs, New Delhi
Shri Sanjay Goel - Member (Ex-officio)
Director (Finance)
DBT, New Delhi
(Nominee of JS \& FA, DBT)
Shri M K Chhabra
Director (Modernization)
BPR\&D, New Delhi
(Nominee of DG, BPR\&D)

Dr Suman Govil

Advisor, HRD Division, DBT, New Delhi
Dr J Gowrishankar - Member Secretary
Director, CDFD

President (till July 2012)

President (from July 2012)

Member

Member (Ex-officio)

Member (Ex-officio)

Member

Member

Member (Ex-officio)

Member (Ex-officio)

Member (Ex-officio)

- Member (Ex-officio)

MEMBERS OF CDFD GOVERNING COUNCIL

Prof M K Bhan

Secretary, DBT, New Delhi
Prof Samir K Brahmachari
Director General, CSIR, New Delhi

Prof P Balaram

Director, IISc, Bangalore
Prof V S Chauhan
Director, ICGEB, New Delhi

Prof Dipankar Chatterji

IISc, Bangalore
Shri Satish Chandra
Joint Secretary \& Legal Adviser
Ministry of Law, New Delhi
Shri S Suresh Kumar
Joint Secretary (PM)
Ministry of Home Affairs, New Delhi
Joint Secretary \& Financial Advisor
DBT, New Delhi
Shri K N Sharma
Additional Director General
BPR\&D, New Delhi
(Nominee of DG, BPR\&D)
Dr Suman Govil - Member (Ex-officio)
Advisor, HRD Division, DBT, New Delhi
Dr J Gowrishankar
Director, CDFD, Hyderabad
Chairperson

Member (Ex-officio)

Member (Ex-officio)

Member

Member

Member (Ex-officio)

Member (Ex-officio)

Member (Ex-officio)

Member (Ex-officio)

MEMBERS OF CDFD RESEARCH AREA PANELS SCIENTIFIC ADVISORY COMMITTEE (RAP-SAC)

Prof P Balaram
Director, IISc, Bangalore

Prof Ramakrishna Ramaswamy

Vice Chancellor, UoH, Hyderabad
Dr Veena K Parnaik
CCMB, Hyderabad
Dr S K Apte
Associate Director, BARC, Mumbai
Dr D P Kasbekar
CCMB, Hyderabad
(Nominee of CCMB)
Prof Sandhya S Visweswaraiah
Member
IISc, Bangalore
Prof Usha Vijayraghavan
Member
IISc, Bangalore
Prof Umesh Varshney
IISc, Bangalore
Prof Sanjeev Galande
Member
IISER, Pune
Dr Chetan E Chitnis
Member
ICGEB, New Delhi
Prof Jaya Sivaswami Tyagi
AllMS, New Delhi
Prof Joyoti Basu
Member
Bose Institute, Kolkata
Dr Debasisa Mohanty
NII, New Delhi
Dr M K Mathew
Member
NCBS, Bangalore
Prof Shubha R Phadke
Member
SGPGI, Lucknow
Chairman

Member

Member

Member

Member

Member品

Member

品

Member

Dr Suman Govil
 Member

Adviser, HRD Division, DBT, New Delhi
(Nominee of DBT)

Dr K V Bhat - Member

NBPGR, New Delhi
(Nominee of Director General, ICAR)

Dr Vijay Kumar
Member
ICMR, New Delhi
(Nominee of Director General, ICMR)

Nominee from Ministry of Home Affairs
Member

Dr J Gowrishankar
Member Secretary
Director, CDFD, Hyderabad

MEMBERS OF CDFD ACADEMIC COMMITTEE

Prof A S Raghavendra

Dean, School of Life Sciences
University of Hyderabad, Hyderabad

Prof Anil K Tyagi

University of Delhi, South Campus, New Delhi

Dr K Satyamoorthy

Director, Manipal Life Sciences Centre
Manipal University, Manipal
Dr D P Kasbekar
CCMB, Hyderabad
Dr Ranjan Sen
CDFD, Hyderabad
Dr Sanjeev Khosla - Member Convenor
Co-ordinator (Academics), CDFD, Hyderabad

MEMBERS OF CDFD FINANCE COMMITTEE

Dr V S Chauhan
Director, ICGEB, New Delhi
Mr Sanjay Goel
Director (Finance), DBT, New Delhi
(Nominee of JS\&FA, DBT)
Prof Dipankar Chatterji
IISc, Bangalore
Shri K M Kutty
Deputy Secretary, DBT, New Delhi
(Nominee of Senior Scientist, DBT)
Dr J Gowrishankar
Director, CDFD, Hyderabad
Joint Secretary \& Financial Adviser
Ministry of Home Affairs, New Delhi
Shri B J Acharyulu
Head - Finance \& Accounts
CDFD, Hyderabad

Member (Ex-officio)

Member

Member (Ex-officio)

Member

Member (Ex-officio)

Member Secretary

MEMBERS OF CDFD BUILDING COMMITTEE

Prof V S Chauhan

Director, ICGEB, New Delhi
Dr J Gowrishankar
Director, CDFD, Hyderabad
Shri S Raghavan
Joint Secretary, DBT, New Delhi
Shri V H Rao
Senior Consultant, NIAB, Hyderabad
Shri J Sanjeev Rao
Head - Administration, CDFD, Hyderabad
Shri B J Acharyulu
Head - Finance \& Accounts, CDFD, Hyderabad
Shri K Ananda Rao
Senior Consultant (Engineering), CDFD, Hyderabad

- Chairman
- Member

Member

Member

Member

Member

Member Convenor

MEMBERS OF CDFD MANAGEMENT COMMITTEE

Dr J Gowrishankar
Director
Dr J Nagaraju
Staff Scientist
Dr Ranjan Sen
Staff Scientist

Dr M V Subba Reddy
Staff Scientist
Shri B J Acharyulu
Head - Finance \& Accounts
Shri J Sanjeev Rao
Head - Administration

Chairperson

Member

Member

Member

Member

Member Convenor

सूचना अधिकार अधिनियम, 2005 का परिपालन Implementation of RTI Act, 2005

IMPLEMENTATION OF RTI ACT, 2005

$$
\begin{aligned}
& \text { Appellate Authority: } \\
& \text { Central Public Information Officer: } \\
& \text { Quarter: } 1^{\text {st }} \text { Quarter Year 2011-2012 } \\
& \text { Details about the requests and appeals }
\end{aligned}
$$

Progress during Quarter						
	Opening Balance as on beginning of $1^{\text {st }}$ quarter	No. of applications received as transfer from other PAs u/s 6(3)	Received during the quarter (including cases transferred to other PAs)	No. of cases transferred to other PAs u/s 6(3)	Decisions where requests/appeals rejected	Decisions where requests/appeals accepted
Requests	0	1	14	0	3	10
First Appeals	1	N/A	0	N/A	0	0
	Total No. of CAPIOs designated		Total No. of CPIOs designated		Total No. of AAs designated	
	0		2		1	

Details about fee collected, penalty imposed and disciplinary action taken			
Registration Fee Collected (in Rs.) u/s 7(1)	Addl. Fee Collected (in Rs.) u/s 7(3)	Penalty Amount Recovered (in Rs.) as directed by CIC u/s 20(1)	No. of cases where disciplinary action taken against any officer u/s 20(2)
120	32	0	0

Quarter: 2 ${ }^{\text {nd }}$ Quarter Year 2011-2012

Details about fee collected, penalty imposed and disciplinary action taken			
Registration Fee Collected (in Rs.) u/s 7(1)	Addl. Fee Collected (in Rs.) $\mathrm{u} / \mathrm{s} 7(3)$	Penalty Amount Recovered (in Rs.) as directed by CIC $\mathrm{u} / \mathrm{s} 20(1)$	No. of cases where disciplinary action taken against any officer u/s 20(2)
20	0	0	0

Quarter: 3rd Quarter Year 2011-2012

Progress during Quarter						
	Opening Balance as on beginning of $1^{\text {st }}$ quarter	No. of applications received as transfer from other PAs u/s 6(3)	Received during the quarter (including cases transferred to other PAs)	No. of cases transferred to other PAs u/s 6(3)	Decisions where requests/appeals rejected	Decisions where requests/appeals accepted
Requests	0	0	8	0	0	3
First Appeals	0	N/A	0	N/A	0	0
	Total No. of CAPIOs designated		Total No. of CPIOs designated		Total No. of AAs designated	
	0		2		1	

Details about fee collected, penalty imposed and disciplinary action taken			
Registration Fee Collected (in Rs.) u/s 7(1)	Addl. Fee Collected (in Rs.) u/s 7(3)	Penalty Amount Recovered (in Rs.) as directed by CIC u/s 20(1)	No. of cases where disciplinary action taken against any officer u/s 20(2)
120	30	0	0

Quarter: 4 ${ }^{\text {th }}$ Quarter Year 2011-2012

Progress during Quarter						
	Opening Balance as on beginning of $1^{\text {st }}$ quarter	No. of applications received as transfer from other PAs u/s 6(3)	Received during the quarter (including cases transferred to other PAs)	No. of cases transferred to other PAs u/s 6(3)	Decisions where requests/appeals rejected	Decisions where requests/appeals accepted
Requests	5	1	6	0	2	10
First Appeals	0	N/A	1	N/A	0	1
	Total No. of CAPIOs designated		Total No. of CPIOs designated		Total No. of AAs designated	
	0		1		1	

Details about fee collected, penalty imposed and disciplinary action taken			
Registration Fee Collected (in Rs.) u/s 7(1)	Addl. Fee Collected (in Rs.) u/s 7(3)	Penalty Amount Recovered (in Rs.) as directed by CIC u/s 20(1)	No. of cases where disciplinary action taken against any officer u/s 20(2)
40	82	0	0

बजट एवं वित्त Budget and Finance

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
 HYDERABAD

Budget \& Finance 2011-12

Sources of Funds

The Financial resources of the Centre are the Core Plan Grant-in-Aid provided by the Department of Biotechnology, Government of India as against Annual Budgetary projections made by the Institute. Other resources are in the form of Research Grants provided by various National and International agencies and also from services rendered by CDFD. The components of the core grants are Plan (Recurring) essentially for meeting expenditures on salaries, operating expenses, etc. and Plan (Non-Recurring) for meeting expenses on account of Equipments, Infrastructure and Furnishing etc.

Receipts during the year 2011-12

Particulars	Amount in Lakhs	Percentage \%
Plan Grant-in-Aid	3802.00	64.72
Sponsored Projects	1894.31	32.24
CDFD Services	31.54	0.54
Misc. Receipts	146.67	2.50
Total	5874.52	$\mathbf{1 0 0 . 0 0}$

I. Application of Funds during 2011-12 (Plan Grant-in-Aid)

S.No.	Particulars	Amount in Lakhs	Percentage $\%$
$\mathbf{1}$	Recurring		
	Salaries \& wages	800.52	19.80
	Operating expenses	1501.30	37.14
	Total	$\mathbf{2 3 0 1 . 8 2}$	56.94
$\mathbf{2}$	Non-Recurring		
	Equipments, Infrastructure	1740.72	43.06
	\& Furnishing	$\mathbf{1 7 4 0 . 7 2}$	$\mathbf{4 3 . 0 6}$
	Total	$\mathbf{4 0 4 2 . 5 4}$	$\mathbf{1 0 0 . 0 0}$

II. Application of Funds during 2011-12 (Extra Mural Projects)

S No	Particulars	Amount in Lakhs	Percentage \%
$\mathbf{1}$	Recurring		
	Salaries \& wages	334.15	21.56
	Operating expenses	1064.38	68.70
	Total	$\mathbf{1 3 9 8 . 5 3}$	$\mathbf{9 0 . 2 6}$
$\mathbf{2}$	Non-Recurring		
	Equipments	150.90	9.74
	Total	$\mathbf{1 5 0 . 9 0}$	$\mathbf{9 . 7 4}$
	Grand Total	$\mathbf{1 5 4 9 . 4 3}$	$\mathbf{1 0 0 . 0 0}$

लेखा परिक्षक की रिपोर्ट Auditor's Report

BAPUJI \& VENKAT

Chartered Accountants

AUDITOR'S REPORT

Date: 23-07-2012
The Director,
Centre for DNA Fingerprinting and Diagnostics,
Nampally, Hyderabad - 500001
We have audited the attached Balance Sheet of CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, Hyderabad, as at $31^{\text {st }}$ March 2012 and also the Income \& Expenditure Account for the year ended on that date annexed there to. These financial statements are the responsibility of the organization management. Our responsibility is to express an opinion on these financial statements based on our audit.

We report that:

1. We have obtained all the information and explanations, which are to the best of our knowledge and belief, were necessary for the purpose of our audit.
2. In our opinion, the organization has kept proper books of account as required by law so far, as appears from our examination of those books.
3. The Balance sheet and Income \& Expenditure account dealt with by this report in agreement with the books of account.
4.

(a) The centre has maintained accounts on Cash basis.
(b) The Centre receives extra mural grants from various National \& International agencies for specific research activities. The Centre has a policy of allocating the overheads and transfer of expenditure of CDFD to different projects at the end of the financial year after taking into account the amount of maximum permissible limit of overheads and also based on the approved budget estimates of the respective projects during the financial year.
5. In our opinion and to the best of our information and according to the explanations given to us, the said Balance sheet and the Income \& Expenditure account read together with the notes thereon gives the required information in the manner so required and give a true and fair view.
a) In so far it relates to the Balance Sheet of the state of the organization as at 31st March 2012 and
b) In so far as it relates to the Income \& Expenditure account of the surplus of the organization for the year ended on 31st March 2012.

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD BALANCE SHEET AS ON 31st MARCH, 2012			(Amount-Rs.)
CORPUS/CAPITAL FUND AND LIABILITIES	Schedule	Current Year	Previous Year
Corpus / Capital Fund	1	996575609	811485570
Reserves and Surplus	2	276778938	272022338
Earmarked/ Endowment Funds	3	50698171	16210479
Secured Loans \& Borrowings	4	0	0
Unsecured Loans \& Borrowings	5	0	0
Deffered Credit Liabilities	6	0	0
Current Liabilities and Provisions	7	64107025	89226416
TOTAL		1388159744	1188944803
ASSETS			
Fixed Assets	8	1024083740	742922549
Investments - From Earmarked / Endowment Funds	9	62398273	78308000
Investments - Others	10	29159376	33724337
Current Assets, Loans, Advances etc.	11	270612851	332084413
Miscellaneous Expenditure			
Internal \& External Electrification		1905503	1905503
TOTAL	24	1388159744	1188944803
Significant Accounting Policies			
Contingent Liabilites and Notes on Accounts	25		
DIRECTOR CDFD	for BAPUJI \& VENKAT	HEAD - FINANCE \& ACCOUNTS	
	CHARTEREDACCOUNTANTS		CDFD

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD INCOME AND EXPENDITURE ACCOUNT FOR THE YEAR ENDING 31st MARCH, 2012			(Amount-Rs.)
INCOME	Schedule	Current Year	Previous Year
Income from Sales/Services	12	3158471.00	3545801.50
Grants/Subsidies	13	210200000.00	185000000.00
Fees/Subscriptions	14	0.00	0.00
Income from Investments	15	10566572.00	789164.00
Income from Royality, Publications, etc.	16	0.00	0.00
Interest Earned	17	1254141.06	2552230.00
Other Income	18	2842632.60	288553.00
Increase/(decrease) in stock of Finished goods and works-in-progress	19	0.00	0.00
TOTAL (A)		228021816.66	192175748.50
EXPENDITURE			
Establishment Expenses	20	80052399.00	69488171.00
Administrative Expenses etc.	21	143212816.86	114154659.00
Expenditure on Grants, Subsides etc.	22	0.00	0.00
Interest	23	0.00	0.00
Depreciation (Net Total at the year-end - corresponding to Schedule 8)			
TOTAL (B)		223265215.86	183642830.00
Balance being excess of Income over Expenditure (A-B)		4756600.80	8532918.50
Transfer to Special Reserve (Specify each) Transfer to / from General Reserve BALANCE BEING SURPLUS/(DEFICIT) CARRIED TO CORPUS/CAPITAL FUND SIGNIFICANTACCOUNTING POLICIES CONTINGENT LIABILITIES AND NOTES ON ACCOUNTS	$\begin{aligned} & 24 \\ & 25 \end{aligned}$		
DIRECTOR for BAPUJI \& VENKAT CDFD CHARTERED ACCOUNTANTS [K VENKATACHARYULU] Partner		HEAD - FIN	\& ACCOUNTS CDFD

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD RECEIPTS AND PAYMENTS ACCOUNT FOR THE YEAR ENDED 31st MARCH 2012} \& \multirow[t]{2}{*}{\begin{tabular}{l}
(Amount - Rs.) \\
Previous Year
\end{tabular}} \\
\hline RECEIPTS \& Current Year \& Previous Year \& PAYMENTS \& Current Year \& \\
\hline \begin{tabular}{l}
1. Opening Balances \\
a) Cash in hand \\
b) Bank Balances \\
i) In current accounts \\
ii) In deposit accounts \\
iii) Savings accounts \\
II. Grants Received \\
a) From Government of India \\
b) From State Government \\
c) From other sources (details) (Grants for capital \& revenue exp.To be shown separately) \\
Research Associates - IISc (Stipend) \\
Research Associates - UGC (Stipend) \\
Research Associates - DBT-JRF(Stipend) \\
Research Associates - EMRC (Stipend) \\
Research Associates - DST-INSPIRE (Stipend) \\
Research Associates - ICMR (Stipend) \\
Projects (Annexure-D) \\
III. Income on Investments from \\
a) Earmarked/Endow. Funds \\
b) Own Funds (Oth. Investment) Investments cancelled \\
IV. Interest Received \\
a) On Bank deposits \\
b) Loans, Advances etc Interest on HBA Advances
\end{tabular} \& \(\begin{array}{r}160550.00 \\ 55687650.25 \\ 0.00 \\ 7645412.22 \\ \\ \\ 380200000.00 \\ 0.00 \\ \\ \\ \\ 4385503.00 \\ 8348180.00 \\ 347790.00 \\ 5197614.00 \\ 250400.00 \\ 665590.00 \\ 189431530.00 \\ \hline\end{array}\) \& 65550.00
42391687.25
0.00
6860352.72

230000000.00
0.00

2059600.00
0.00
2861218.00
7268874.00
05490.00
84793274.00
789164.00
70000000.00
229789.00

6308.00 \& | 1. Expenses |
| :--- |
| a) Establishment Expenses (corresponding to Schedule 20) |
| b) Administrative Expenses (corresponding to Schedule 21) |
| c) Schedule 22 |
| II. Payments made against funds for various projects |
| (Name of the fund or project should be shown along with the particulars of payments made for each project) Projects (Annexure H) EMRC a/c (Stipend) DBT A/c (Stipend) IISc A/c (Stipend) UGC A/c (Stipend) DST Inspire (Stipend) ICMR (Stipend) |
| III. Investments and deposits made |
| a) Out of Earmarked/Endowment funds |
| b) Out of Own Funds (Investments-others) |
| IV. Expenditure on Fixed Assets \& Capital Work-in-Progress |
| a) Purchase of Fixed Assets : |
| Books \& Journals |
| Equipment - Lab / Office / Furniture |
| Non Consumables |
| DG Set |
| b) Expenditure on Capital Work-in-progress: Building | \& 80052399.00

143212816.86
0.00

154943838.00
10949949.00
3239590.00
1869165.00
4282140.00
247039.00
1879593.00
116714571.00
0.00
1185197.00
1870.00
1990000.00
149823117.00 \& 69488171.00
114154659.00
0.00

87058572.00
7346700.00
2278102.00
1298574.00
1808382.00
17109.00
1089703.00
67500000.00
0.00
853343.00
3081893.00
0.00
0.00
12297977.00

\hline DIRECTOR CDFD \& \multicolumn{3}{|l|}{for BAPUJI \& VENKAT CHARTEREDACCOUNTANTS [K VENKATACHARYULU] Partner} \& - FINANCE \& CCOUNTS CDFD

\hline
\end{tabular}

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2012				
		Current Year		Previous Year
SCHEDULE 1 -CORPUS/CAPITAL FUND : Balance as at the beginning of the year Add : Contribution towards Corpus/Capital Fund CDFD Core - Plan (Non-Recurring) Capitalised portion of fixed assets of projects Add : Balance of net income/(expenditure) transferred from the income and Expenditure Account	$\begin{array}{r} 170000000.00 \\ 15090039.00 \\ \hline \end{array}$	$\begin{aligned} & 811485570.00 \\ & 185090039.00 \end{aligned}$	$\begin{array}{r} 45000000.00 \\ 11023317.00 \end{array}$	755462253.00 56023317.00 0.00
BALANCE AS AT THE YEAR END		996575609.00		811485570.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2012				
SCHEDULE 3-EARMARKED/ENDOWMENT FUNDS	Current Year		Previous Year	
(Refer Annexures P 03-P 144, COE I \&II \& A to M) (a) Opening balance of the funds (b) Additions to the Funds : i. Donations /grants ii. Income from investments made on account of funds iii. Other additions	$\begin{array}{r} 189431530.00 \\ 0.00 \\ 0.00 \end{array}$	$\begin{aligned} & 16210479.20 \\ & 189431530.00 \end{aligned}$	$\begin{array}{r} 84793274.00 \\ 0.00 \\ 0.00 \\ \hline \end{array}$	18475777.20 84793274.00
TOTAL (a+b)		205642009.20		103269051.20
(c) Utilisation/Expenditure towards objective of funds (i) Capital Expenditure (Refer Annexures I \& II) - Fixed Assets - Others Total (ii) Revenue Expenditure - Salaries, Wages and allowances etc. - Rent - Other Expenses Total	15090039.00 0.00 33415240.00 0.00 106438559.00	$\begin{array}{r} 15090039.00 \\ 139853799.00 \end{array}$	11023317.00 6749850.00 23412168.00 0.00 45873237.00	17773167.00 69285405.00
TOTAL (c)		154943838.00		87058572.00
NET BALANCE AS AT THE YEAR-END (a+b-c)		50698171.20		16210479.20

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2012				
	Current Year		Previous Year	
SCHEDULE4-SECURED LOANS AND BORROWINGS:				
1. Central Government		0.00		0.00
2. State Government (Specify)		0.00		0.00
3. Financial Institutions (a) Term Loans	0.00		0.00	
(b) Interest accured and due	0.00	0.00	0.00	0.00
4. Banks	0.00		0.00	
- Interest accured and due	0.00		0.00	
(b) Other Loans (speciity)	0.00		0.00	
- Interest accured and due	0.00	0.00	0.00	0.00
5. Other Institutions and Agencies		0.00		0.00
6. Debentures and Bonds		0.00		0.00
7. Others (Specify)		0.00		0.00
TOTAL		0.00		0.00
Note: Amount due within one year				

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2012					
(Amount - Rs.)					

| CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
 SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2012 |
| :--- | :--- | :--- | :--- | :--- |
| (Amount - Rs.) |

				\bigcirc					

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2012				
	Current Year		Previous Year	
SCHEDULE 7 - CURRENT LIABILITIES AND PROVISIONS Income Tax Computer Advance - staff Indo- US Workshop DST Expert Meeting Other receipts HBA Royalties \& Consultancy Indo Canada workshop PPF LIC TA/DA advance Ramalingaswami Fellows Conclave UGC stipend	76988.00 75300.00 1166374.00 200431.00 600000.00 95087.00 1548122.00 12784.00 22890.00 2550.00 116324.44 1152781.00 2007559.00	64107025.26	20406.00 64100.00 1166374.00 200431.00 600000.00 95087.00 2554084.00 551644.00 19160.00 0.00 0.00 0.00 0.00	89226415.82
TOTAL (A)	64107025.26			89226415.82
B. PROVISIONS 1. For Taxation 2. Gratuity 3. Superannuation/Pension 4. Accumulated Leave Encashment 5. Trade Warranties/Claims 6. Others (specify)	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & \hline \end{aligned}$	0.00	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & \hline \end{aligned}$	0.00
TOTAL (B)		0.00		0.00
TOTAL ($\mathrm{A}+\mathrm{B}$)	0.00	64107025.26		89226415.82

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD

$\begin{array}{lll}8 & 8 & 8 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \\ 0 & \end{array}$

 $976684.50 \quad 957984.50$

 | 0.00 | 0.00 | 1024083740.25 | 742922549.25 |
| :--- | :--- | :--- | :--- | SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2012

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2012		
SCHEDULE 9-INVESTMENTS FROM EARMARKED/ENDOWMENT FUNDS	Current Year	Previous Year
1. In Government Securities	0.00	0.00
2. Other approved Securities	0.00	0.00
3. Shares	0.00	0.00
4. Debentures and Bonds	0.00	0.00
5. Subsidiaries and Joint Ventures	0.00	0.00
6. Others (to be specified) - STDRs (Annexure - L)	62398273.00	78308000.00
TOTAL	62398273.00	78308000.00

| CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
 SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2012 |
| :--- | ---: | ---: |
| (Amount - Rs.) |

CENTRE FOR DNA FINGERPRIN SCHEDULES FORMING PART OFINC	RABAD H 2012	
SCHEDULE 12 -INCOME FROM SALES/SERVICES1) Income from Sales	Current Year	Previous Year
b) Sale of Raw Material	0.00 0.00	0.00 0.00
c) Sale of Scraps	3760.00	00.00
2) Income from Services		
a) Labour and Processing Charges	0.00	0.00
b) Professiona//Consultancy Services (Analysis Charges)	3154711.00	3545801.00
c) Agency Commission and Brokerage	0.00	0.00
d) Maintenance Services (Equipment/Property)	0.00	0.00
e) Others (Specify)	0.00	0.00
TOTAL	3158471.00	3545801.00
CENTRE FOR DNA FINGERPRIN SCHEDULES FORMING PART OF INC	RABAD H2012	
		(Amount-Rs.)
SCHEDULE 13-GRANTS/SUBSIDIES	Current Year	Previous Year
(Irrevocable Grants \& Subsidies Received)		
1) Central Government (DBT Plan Grant-in-Aid)	210200000.00	185000000.00
2) State Government (s)	0.00	0.00
3) Government Agencies	0.00	0.00
4) Institutions/Welfare Bodies	0.00	0.00
5) International Organisations	0.00	0.00
6) Others (Speciity)	0.00	0.00
TOTAL	210200000.00	185000000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012		
		(Amount-Rs.)
SCHEDULE 14-FEESSUUBSCRIPTIONS	Current Year	Previous Yea
1) Entrance Fees	0.00	0.00
2) Annual Fees/Subscriptions	0.00	0.00
3) Semina/Program Fees	0.00	0.00
4) Consultancy Fees	0.00	0.00
5) Others (Specity)	0.00	0.00
	0.00	0.00
TOTAL	0.00	0.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012				
SCHEDULE 15-INCOME FROM INVESTMENTS	Investment from Earmarked Fund		Investments - Others	
(Income on Invest from Earmarked/Endowment Funds	Current Year	Previous Year	Current Year	Previous Year
transferred to				
a) On Govt. Securities			0.00	
b) Other Bonds/Debentures	0.00	0.00	0.00	0.00
Dividends				
a) On Shares	0.00		0.00	
b) On Mutual Fund Securities	0.00	0.00	0.00	0.00
3) Rents	0.00	0.00	0.00	0.00
4) Others (Speciify) STDRs	10566572.00	789164.00	0.00	0.00
total	10566572.00	789164.00	0.00	0.00
TRANSFERRED TO EARMARKED/ENDOWMENT FUNDS				

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012		
SCHEDULE 16-INCOME FROM ROYALITY, PUBLICATIONS ETC.	Current Year	Previous Year
1) Income from Royality	0.00	0.00
2) Income from Publications	0.00	0.00
3) Others (Specify)	0.00	0.00
TOTAL	0.00	0.00
CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012 (Amount-Rs.)		
SCHEDULE 17-INTEREST EARNED	Current Year	Previous Year
1) On Term Deposits a) With Scheduled Banks b) With Non-Scheduled Banks c) With Institutions d) Others	$\begin{array}{r} 963584.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{r} 82341.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$
2) On Savings Accounts a) With Scheduled Banks b) With Non-Scheduled Banks c) Post Office Savings Accounts d) Others	$\begin{array}{r} 290557.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{r} 116256.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$
3) On Loans a) Employees/Staff b) Others	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$
4) Interest on Debtors and Other Receivables	0.00	0.00
TOTAL	1254141.00	198597.00
Note - Tax deducted at source to be indicated		

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012		
SCHEDULE 18-OTHER INCOME	Current Year	Previous Year
1) Profit on Sale/disposal of Assets: a) Owned assets	0.00	0.00
b) Assets acquired out of grants, or received free of cost	0.00	0.00
2) Export Incentives realized	0.00	0.00
3) Fees for Miscellaneous Services	0.00	0.00
4) Miscellaneous Income:		
Sundry receipts	2466175.60	38031.00
Sale of Tender forms	25000.00	77500.00
Guest House receipts	38300.00	27900.00
Hostel receipts	2050.00	12575.00
Application Fees	284300.00	121090.00
Interest on HBA Advance	18924.00	6308.00
Interest on Computer Advance	0.00	521.00
Interest on Vehicle Advance	7883.00	4628.00
TOTAL	2842632.60	288553.00
CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012		
		(Amount-Rs.)
SCHEDULE 19 - INCREASE/(DECREASE) INSTOCK OF FINISHED GOODS \& WORK IN PROGRESS a) Closing stock Finished Goods Work-in-progress	Current Year	Previous Year
	0.00	0.00
	0.00	0.00
Total (a)	0.00	0.00
b) Less: Opening Stock		
- Finished Goods	0.00	0.00
- Work-in-progress	0.00	0.00
Total (b)	0.00	0.00
NET INCREASE/(DECREASE) [a-b]	0.00	0.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012 (Amount-Rs.)		
SCHEDULE 20-ESTABLISHMENT EXPENSES	Current Year	Previous Year
a) Salaries and Wages	74470200.00	64482657.00
b) Allowances and Bonus	1597702.00	294502.00
c) Contribution to Provident Fund	2282201.00	2584414.00
d) Contribution to Other Fund (Specify)	0.00	0.00
e) Staff Welfare Expenses - Medical charges	1398440.00	1499162.00
f) Expenses on Employees Retirement and Terminal Benefits	303856.00	627436.00
g) Others (specify) - Staff leased House		0.00
TOTAL	80052399.00	69488171.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012			
	EDULE 21 - OTHER ADMINISTRATIVE EXPENSES, ETC.	Current Year	Previous Year
1	Purchases (Consumables)	52186698.60	28907039.00
2	Labour and processing expenses	0.00	0.00
3	Cartage and Carriage Inwards	0.00	0.00
4	Electricity and power \& Water Charges	18343015.00	15453669.00
5	Water charges	0.00	0.00
6	Insurance	0.00	
7	Repairs and Maintenance	21061051.00	17634146.00
8	Excise Duty	0.00	0.00
9	Rent, Rates and Taxes	17082514.00	16183639.00
10	Vehicles Running and Maintenance	873865.00	691891.00
11	Postage, Telephone and Communication Charges	1993049.00	2090345.00
12	Printing and Stationary	1238899.00	1297775.00
13	Travelling and Conveyance Expenses	6189789.26	7455620.00
14	Expenses on Seminar/Workshops	611987.00	0.00
15	Subscription Expenses	21932.00	34941.00
16	Expenses on Fees (Membership Fees)	348971.00	55915.00
17	Auditors Remuneration	27395.00	19854.00
18	Hospitality Expenses (Meeting Expenses)	1123155.00	1042842.00
19	Professional Charges (Legal Expenses incl. Patent charges)	2555345.00	3974647.00
20	Provision for Doubtful Debts/Advances - Workshop	0.00	0.00
21	Irrecoverable Balances Written-off	0.00	0.00
22	Packing Charges	0.00	0.00
23	Freight and Forwarding Expenses	0.00	0.00
24	Distribution Expenses	0.00	0.00
25	Advertisement and Publicity	3294255.00	6176174.00

| CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
 SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012 | | | |
| :--- | :--- | ---: | ---: | ---: |
| (Amount-Rs.) | | | |
| SCHEDULE 21 - OTHER ADMINISTRATIVE EXPENSES, ETC. | Current Year | Previous Year | |
| 26 | Hindi / Foundation day expenses | 69792.00 | 11580.00 |
| 27 | Bank charges | 6864.00 | 3881.00 |
| 28 | Security \& Cleaning contract charges | 14901941.00 | 12980676.00 |
| 29 | Internet leased line charges | 1114030.00 | 13500.00 |
| 30 | Training Course / Symposia | 168269.00 | 126525.00 |
| | TOTAL | $\mathbf{1 4 3 2 1 2 8 1 6 . 8 6}$ | $\mathbf{1 1 4 1 5 4 6 5 9 . 0 0}$ |

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012		
		(Amount-Rs.)
SCHEDULE 22-EXPENDITURE ON GRANTS, SUBSIDES, ETC.	Current Year	Previous Year
a) Grants given to Institutions/Organisations	0.00	0.00
b) Subsidies given to Institutions/Organisations	0.00	0.00
TOTAL	0.00	0.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD SCHEDULES FORMING PART OF INCOME \& EXPENDITURE AS AT 31st MARCH 2012		
SCHEDULE 23-INTEREST	Current Year	Previous Year
a) On Fixed Loans	0.00	0.00
b) On Other Loans (including Bank Charges)	0.00	0.00
c) Others	0.00	0.00
TOTAL	0.00	0.00

Schedule 24: Significant Accounting Policies, and Schedule 25: Contingent Liabilities \& Notes on Account for the period ended 31/03/2012

1. Method of Accounting:

a. The accounting system adopted by the organization is on "Cash basis".
b. The organization has been allocating plan grant-in-aid under the "Non-recurring" \& "Recurring" heads.
2. Revenue recognition:

Income comprises of Grant-in-Aid, Internal resources through services and interest from short term deposits. Income accounted on the basis of the Cash/DD/Cheques/Cr notes received.
3. Fixed Assets:
(a) Fixed assets are stated at cost. Cost includes freight, duties, and taxes etc.
(b) Depreciation: No depreciation on the fixed assets is charged and as such no ageing of fixed assets are being done.
(c) Capital work in progress has been entered to the extent of the last running account bills paid.
(d) Realization on sale of obsolete/surplus fixed assets which is not required for the purpose of research activities are adjusted against capital cost.
4. Inventories:

All purchases of chemicals, glassware and other consumables have been charged to consumption at the time of purchase.
5. Foreign Currency transactions:

Foreign Currency transactions are recognized in the books at the exchange rates prevailing on the date of transaction.
6. Investments:

Investments in STDR's are stated at book values.

7. Advances:

It is observed from the objection book register that advances to suppliers for consumables \& equipments are to be reconciled and adjustment entries are to be passed in the books of accounts.
8. The previous year balances have been regrouped/rearranged, wherever necessary.

Director, CDFD

Head Finance \& Accounts

for Bapuji \& Venkat Chartered Accountants
[K VENKATACHARYULU]

Place: Hyderabad
Date: 23/07/2012

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
 CLARIFICATION ON NOTES ON ACCOUNTS: 2011-12
 * Notes on Accounts 1 to 6 \& 8: Method of Accounting/ Revenue recognition/Fixed Asset/Inventories/ Foreign Currency transactions/Investments:

These are all only informatory items.

* Notes on Accounts 7: Advances:

The observation of the audit has been noted. The action has already been initiated to reconcile the objection book register.

B. J. ACHARYULU
 Head, Finance \& Accounts, CDFD

Details of closing balances of various Earmarked / Endowment Funds (Refer Sch-3) for the year ended 31st March 2012

Amount in Rs.

Previous year	P No	Particulars	Current Year
-630047.00	P-03	"Transgenesis and Genetic basis of Pathogen Resistance in the Silkworm, Bombyx Mori	-630047.00
0.00	P-04	"Silkworm Breeding for Productivity improvement of silk	0.00
244305.00	P-09	"NMITLI Project on - Latent M.Tuberculosis: New targets, Drug delivery systems, Bio enhancers \& Therapeutics"	244305.00
-28332.00	P-10	"Role of upstream sequence elements in Hyper activation of transcription from Baculovirus polyhedrin gene promoter"	-28332.00
6737.00	P-13	"Programme to delineate gene functions in the post - genomics era by a systematic two gene knockout method"	6737.00
0.00	P-15	"The Helicobacter Pylori genome programme - Genome sequencing, functional analysis and comparitive genomics of the strains obtained from Indian patients"	0.00
-687887.00	P-17	"Studies on inosital-phosphate synthesis - a novel enzyme from Mycobacterium tuberculosis H37RV" - Transfer from IMTECH, Chandigarh	-687887.00
-274286.00	P-18	"Mapping of receptor binding site on the Eythrocyte binding of malaria parasyte"	-274286.00
0.00	P-19	"Construction of Integrated RAPD, RFLP and Microsatellite linkage map of the Silkworm, Bombyx mori and its corelation with the Phenotypic linkage Map"	0.00
-1888111.00	P-20	"Genomic Micro array R\&D Programmes on infectious diseases and Neurological Disorders"	-1888111.00
0.00	P-21	Development of Versatile, portable software for Bio-informatics	0.00
-34495.00	P-23	"Development of PCR base assays for detection of GMO'S"	-34495.00
-529111.00	P-25	"Functional studies of Human Immuno - deficiency Virus Type-2 (HIV-2) Viral protien X (VPX)"	-529111.00
-79533.00	P-26	Occurrence of Mutations in Non dividing cells of Escherichia Coli"	-79533.00
-37624.00	P-28	Baculovirus resistance in transgenic silkworms	-37624.00
-310302.00	P-29	"Development of Hospital Surveillance system by advanced diagnostics method \& Molecular DNA f ingerprinting techniques"	-310302.00
2045696.00	P-30	"Transcription termination and anti termination in E. Coli"	2045696.00
746453.00	P-31	Role of K-ras in Lung type II epithelial cells	746453.00
-234000.00	P-33	"Molecular and Epidemiological characterisation of cryptosporidium - An enteric protozoon parasite"	-234000.00
26334.00	P-34	"Molecular analysis of lepidopteran - specific immune protiens from silkmoths"	26334.00
-283883.00	P-35	"Identification, Characterization and Physical mapping of Z-Chromosome linked genes of the silk worm, Bombyxmori"	-283883.00
2073896.00	P-36	"Development of Artificial retina using Bacterio rhodospin and genetically engineered analogues "	2073896.00
-226058.00	P-40	"Antioxidants as a potential immuno adjuvant in anti tuberculosis immunotherapy"	-226058.00
1873605.00	P-41	"Construction, characterization and analysis of expressed sequences from silkworm"	1873605.00
-2237285.00	P-42	"Structural and functional studies on Mycobacterium tuberculosis heat shock proteins".	-2237285.00
685906.70	P-43	"A generalized mechanism of transcription termination in prokaryotes: a quest for mechanism based transcription inhibitors for microbial pathogens".	685906.70
-457538.00	P-44	"Understanding of role of Ras and NO / iNOS signalling in promotion of hepatocellular carcinomas with persistent HBV infection"	-457538.00
605714.00	P-45	Specialized chromatin structures as epigenetic imprints to distinguish parental alleles".	605714.00
0.00	P-46	"Effect of reactive oxygen species (ROS) on immune response : Relevance in immunosuppression and Pathogenesis"	0.00
-1586965.00	P-47	Research cum Training for DRDO Programme	-1586965.00
151826.00	P-48	'Molecular characterization of human liver stem cells for use in the treatment of hepatic diseases'.	151826.00
0.00	P-49	"The Mycobacterium W genome program : Complete genome sequencing and comparative genomics"	0.00
470313.00	P-49A	Grant sanctioned by International Atomic Energy	440950.00
0.00	P-50	"Cervical cancer prevention by multiple strategies in rural community in Andhra pradesh"	0.00
-284065.00	P-51	"Understanding the mechanism of doxorubicin resistance in breast cancer celline MCF-7"	-284065.00
-1231118.00	P-52	"Nucleo Cytoplasmic transport of HIV - 1 Vpr"	-1231118.00
0.00	P-53	Collaborative research project on molecular ecology and systematics	0.00
-37877.00	P-54	"Study of viability of Mycobacterium leprae in clinical samples and possibility of its presence in the environment using nucleic acid amplification techniques."	-37877.00
224.00	P-55	"Identification of DNA Markers for baculovirus resistance in silkworm, Bombyx mori"	224.00
-1231164.00	P-56	"Genetics of transcription-replication interplay and of stress adaptation in bacteria"	-1231164.00
0.00	P-57	Improved genome annotation through a combination of machine learning and experimental methods: Plasmodium falciparum as a case study.	0.00
0.00	P-58	"Indo-Malaysian collaboration in Bioinformatics: Development and maintenance of a web-portal hosting databases and tools of common interest"	0.00
0.00	P-58A	Functional Genomics on Rice	0.00
-2215024.00	P-59	"An integrated Approach towards understanding the biology of Mycobacterium tuberculosis: Genetic, biochemical, immunological and structural analyses."	-2215024.00
482124.00	P-60	"National Database of Prevalent Genetic Disorders in India: Development, Curation and Services"	482124.00
-280000.00	P-61	"Dissection of a novel phenotype of lethal accumulation of potassium in Escherichia coli mutants defective in thioredoxin/thioredoxin reductase and nucleoied protein H-NS"	-280000.00
-278928.00	P-62	"HIV - 1 Pathogenesis: Role of Integrate in Reverse Transciption and Nuclear Transport of Viral Genome"	-278928.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
 Details of closing balances of various Earmarked / Endowment Funds (Refer Sch-3) for the year ended 31st March 2012

Amount in Rs.

Previous year	P No	Particulars	Current Year
-837574.00	P-63	"Upgradation of the existing computing infrastructure at the Bioinformatics facility at CDFD"	-837574.00
-158.00	P-64	Biotechnology for Leather: Towards cleaner processing phase-II	-158.00
-582647.00	P-65	"Molecular, genetic and functional analysis of the chromosomal plasticity region of the gastric pathogen	588
16381715.00	P-65A	APEDA - CDFD Centre for Basmati DNA Analysis	-582647.00 18938021.00
-681246.00	P-66	Human Epigenome Variation: Analysis of CpG island methylation in chromosomes 18 and Y , and in some	
-113545.00	P-67	Hox, insulin signaling and chromatin reprogramming genes Identification of novel Esophageal Squamous cell carcinoma (ESCC) genes by using a combination of array-based CGH and gene expression micro arrays	-681246.00 -113545.00
-59874.00	P-68	Identification of High risk individual with pre-cancerous states of esophageal cancer.	-59874.00
0.00	P-69	ICMR adhoc New Scheme 'Understanding the role of PE/PPE family of M tuberculosis in the activation of HIV virus type I long terminal repeat (HIV-ILTP)	0.00
-21336.00	P-70	Identification of disease causing mutations in familial hypertrophic cardiomyopathy (FHC) patients from Andhra Pradesh	-21336.00
-591490.00	P-71	Referral Centre for Genetic fidelity testing of tissue culture raised plants	15829.00
-1421653.00	P-72	Nuances of Non coding DNA near insulin-responsive genes	-1421653.00
-857136.00	P-73	Identification and characterization of pancreatic cancer genes located within novel localized cpy number alterations	-857136.00
0.00	P-74	Molecular basic of insect plant interactions in rice under the national fund for basic and strategic research in agriculture	0.00
-10840.00	P-75	Preparing blueprint for the macromolecular crystallography beamline at Indus-II synchrotron source	-10840.00
-50234.00	P-76	A study of Molecular Markers in childhood Autism with special references to nuclear factors - APPA B"	-50234.00
124277.00	P-77	Functional characterization of Mycobacterium tuberculosis PE/PPE proteins having SH3 binding domain: Understanding their role in modulating macrophage functions	124277.00
1304.00	P-78	Task Force - IMD Newborn Screening for Congenital Hypthyroidism \& Congenital Adrenal Hyperplasis: A Multicentric Study"	1304.00
-1900986.00	P-79	Understanding the role of AGE proteins in inducing inflammatory responses and its regulation	-105086.00
-53994.00	P-80	Referral Centre for Detection of Genetically Modified Foods employing DNA - based Markets	-608222.00
0.00	P-80A	Fluorescent amplified fragment length polymorphism analysis of different genomic species - development of species specific markers for the identification of Leptospirosis	0.00
-13198864.00	COE-I	COE for Genetics and Genomics of silkmoths	-3110519.00
214215.00	P-81	Reconstructing cellular Networks: Two-Component Regulatory Systems	143470.00
107800.00	P-81A	Financial Assistance for award of JC Bose Fellowship to Dr J Gowrishankar	62620.00
423591.00	P-82	Functional Genomic Analysis of Candida Glabrata-macrophage	155859.00
-1155594.00	P-83	Prokaryotic Transcription Termination Factor, Rho: Mechanism of Action and Biology	-1155594.00
-126140.00	P-83A	Understanding the mechanism of Azadirachtin-mediated cell signaling: role in anti-inflammation and anti-tumorigenesis	-126140.00
-1150.00	P-84	Preparing for tuberculosis vaccine efficacy trials: Baseline epidemiology, improved diagnosis, markers of protection and phase I/II trials	-1150.00
676641.00	P-84A	Human epigenetic to the rescue of Human Identification process: Entriching human DNA from DNA mixture employing antibodiesdirected against 5-methylcytosine followed by whole genome amplification	-106479.00
-1118755.00	P-85	IdeR associated gene regulatory network in mycobacteria	-1118755.00
0.00	P-86	Evaluation of Mycobacterium W as an immunotherapeutic against paratuberculosis (John's Disease of cattle)	0.00
-65698.00	P-87	Comparative genomic of wild silkmoths under India-Japan Co-operative Science programme (IJCSP)	-65698.00
-4591687.00	COE-II	DBT Centre of Excellence for Microbial Biology	-8969700.00
740000.00	P-88	Financial Assistance for award of TATA Innovation Fellowship to Dr J Nagaraju	0.00
-300000.00	P-89	Characterization of Mycobacterium tuberculosis transcription machinery and Bacteriophage metagenomics	0.00
-451999.00	P-90	Role of Yapsins in the Pathobiology of Candida Glabrata	-636286.00
-787064.00	P-91	DNMT3L: Epigenetic correlation with cancer	-1098900.00
-1238545.00	P-92	Swarnajayanti Fellowship: Designing transcription anti-terminators: a novel apprach for making new inhibitors of gene expression	-1260461.00
-684179.00	P-93	Virtual Centre of Excellence on multidisciplinary approaches aimed at interventions against tuberculosis	-1506886.00
424041.00	P-95	Construction of regulatory networks in prokaryotes through protein: Protein interaction predictions and transcription regulation predictions.	0.00
-655942.00	P-96	Molecular Characterization of sporadic colorectal cancer in the young from India	0.00
488524.00	P-97	Proteome-wide Analysis of Serine pyrophosphorylation by inositol pyrophosphates	-98464.00
-466554.00	P-98	Role of cell - cell signaling mediated by Diffusible signaling factor (DSF) in Xanthomonas virulence	-63019.00
-113757.00	P-99	Role of inositol Pyrophosphates in eukaryotic cell growth, proliferation and ribosomae biogenesis	-1261900.00
-300000.00	P-100	Effect of reactive oxygen species on T-Cell immune response: An approach to understand the molecular mechanism of immunosuppression during tuberculosis" - National Bioscience Award	-335000.00
15688931.00	P-101	Role of inositol pyrophosphates in cell physiology: Investigating the biochemical significance of protein pyrophosphorylation - Senior Fellowship	13729401.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS

Amount in Rs.

Amount in			
Previous year	P No	Particulars	Current Year
-445133.00	P-102	Understanding the role of Mycobacterium tuberculosis heat shockprotein 60 as Th1/Th2 immuno modular	82654.00
0.00	P-103	National Bioscience Award - Regulation of mast cell signaling, apoptosis and surface receptors	-300000.00
297613.00	P-104	Virtual Centre of Excellence on Epigenetics - Project 4: Epigenetic dynamics in cell types and its potential association with environment and disease	-1394866.00
145971.00	P-105	Cloning, Characterisation and analysis of chromosomal rearrangements in human genetic disorders	-90844.00
-446056.00	P-106	Clinical, Biochemical and Molecular analysis of Treatable Lysosomal storage Disorders	190952.00
602006.00	P-107	IYBA Project - Mechanism and role of bacterial cell-cell signaling molecules in plant defense response	63600.00
184023.00	P-108	Establishment of EBV transformed cell lines from families with rare genetic disorders	69925.00
1476104.00	P-109	Molecular dissection of PI3-Kinase/Akt pathway by suing proteomics based approach: A study to identify novel potential oncogenes and tumor suppressors	315626.00
24389.00	P-110	India-Japan research project title"Identification and analysis of sex determining genes in silkmoths"	-168679.00
488631.00	P-111	Ramalingaswami Fellowship - Refractoriness mechanism in Mosquito: cracking molecular codes at genomic scale	431731.00
803726.00	P-112	Ramanujan Fellowship	0.00
550715.00	P-113	Clinical and molecular genetic analysis of squamous cell carcinoma of the tongue	534630.00
1532761.00	P-114	Evaluating the Calcineurin-NFAT Pathway and its regulators superoxide dismutase (SOD) AND RCAN1 (regular of Calcineurin) Down Syndrome	51553.00
4559305.00	P-115	Setting up of the National Institute of Animal Biotechnology	8039741.00
1692817.00	P-116	DBT-India and AIST - Japan : Understanding molecular mechanisms controlling dual role of Ras, Sirtuins and	
5251500.00	P-117	CARF in relation to cellular proliferation and senescence: Novel Strategy for developing cancer therapeutics Joint New Indigo Era-Net project titled "Mycobacterium Tuberculosis:bioinformatic and structural strategies	-288420.00
		towards treatment	0.00
1115770.00	P-118	Construction of regulatory networks in Mycobacterium tuberculosis through analysis of gene expression data and transcription regulation predictions. (MOU with Russian Foundation)	0.00
560342.00	P-119	Analysis of DNA copy number alterations in esophaeal cancer	-738605.00
617000.00	P-120	Effect of reactive oxygen species on macrophage signalosome: impact on antigen presentation functions and T Cell priming responses	124600.00
37096.00	P-121	Identification and characterization of PTEN regulators	-597186.00
0.00	P-122	Understanding the role of Hox genes in anterior-posterior axis determination of the central nervous system	11479043.00
0.00	P-123	Establishment and Implementation of the Indo-German DST -MPG (Max Planck Society) Partner Group on Genetic Diversity Studies	2074056.00
0.00	P-124	Preparation and characterization of peroxometal compounds and studies and their biological significance in cellular signalling	167284.00
0.00	P-125	Mechanistic studies on the role of protein kinase Snfilk in cell cycle and cancer	154000.00
0.00	P-126	Rho-dependent transcription termination machinery: mechanism of action	1581615.00
0.00	P-127	Systematic studies on the functional network of phosphatases in cell life and death	5052715.00
0.00	P-128	Mechanism of iron acquisition and iron homeostasis in an opportunistic human pathogen Candida glabrata	2053587.00
0.00	P-129	Discovery of bioactive natural products from microbes especially actinomycetes in niche biotopes in Manipur	306000.00
0.00	P-130	Comparative genetic analysis of sex chromosomes and sex determining genes in silkmoths	4187000.00
0.00	P-131	Structural and functional studies of Acyl CoA Binding proteins from plasmodium falciparum	1182935.00
0.00	P-132	Characterization of tumor suppressor function of ARIDIB, a component of the human SWI/SNF chromatin remodelling complex	634323.00
0.00	P-133	Investigating the role of Hox gene deformed in central nervous system patterning in Drosophila melanogaster	1549000.00
0.00	P-134	Exploration of wild silk moth biodiversity in Manipur and their genetic characterization using molecular markers	254000.00
0.00	P-135	Sys TB: A Network Program for Resolving the Intracellular Dynamics of Host Pathogen Interaction in TB infection	7418200.00
0.00	P-136	Raf Kinase - a key target for modern-day therapy againt tumors	837200.00
0.00	P-137	Signaling pathways involved in down regulation of proinflammatory responses by PPE18 protein of	
		Mycobacterium tuberculosis: Implication of PPE18 as therapeutics"	1500000.00
0.00	P-139	Evaluating the role of Sirtuins and epigenetic changes during cellular senescence in context of p53 status	2467200.00
0.00	P-144	Tri-National Training Program for Psychiatric Genetics	267184.00
16210479.20		Total	50698171.20

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS Details of Fixed Assets Fund (Capitalised portion of Project Grants) for the year ended 31st March 2012

Amount in Rs.

Previous year	P No	Particulars	Current Year
600000.00	P-03	"Transgenesis and Genetic basis of Pathogen Resis	600000.00
329289.00	P-07	"Collection of well characterised clinical samples and strains of Mycobacterium tuberculosis and development of molecular techniques for detection of drug resistant strains - Multi Centric Project"	329289.00
588400.00	P-09	"NMITLI Project on - Latent M.Tuberculosis: New targets, Drug delivery systems, Bio enhancers \& Therapeutics"	588400.00
47400.00	P-10	"Role of upstream sequence elements in Hyper activation of transcription from Baculovirus polyhedrin gene promoter"	47400.00
529750.00	P-12	Molecular genetics and Functional genomics of M.Tuberculosis patient isolates in India	529750.00
1334600.00	P-13	"Programme to delineate gene functions in the post - genomics era by a systematic two gene knockout method"	1334600.00
5163243.00	P-14	"Comparitive and functional genomics approaches for the identification and characterization of genes responsible for multi drug resistance of mycobacterium tuberculosis"	5163243.00
6000000.00	P-15	"The Helicobacter Pylori genome programme - Genome sequencing, functional analysis and comparitive genomics of the strains obtained from Indian patients"	6000000.00
1814901.00	P-16	NMITLI Project on - Latent M.Tuberculosis: New targets, Drug delivery systems, Bio enhancers \& Therapeutics	1814901.00
244400.00	P-17	"Studies on inosital-phosphate synthesis - a novel enzyme from Mycobacterium tuberculosis H37RV" - Transfer from IMTECH, Chandigarh	244400.00
344020.00	P-18	"Mapping of receptor binding site on the Eythrocyte binding of malaria parasyte"	344020.00
7246511.00	P-19	"Construction of Integrated RAPD, RFLP and Microsatellite linkage map of the Silkworm, Bombyx mori and its corelation with the Phenotypic linkage Map"	7246511.00
27331134.00	P-20	"Genomic Micro array R\&D Programmes on infectious diseases and Neurological Disorders"	27331134.00
5300000.00	P-21	Development of Versatile, portable software for Bio-informatics	5300000.00
603747.00	P-22	"Biotechnology for leather - towards cleaner processing"	603747.00
375999.00	P-23	"Development of PCR base assays for detection of GMO'S"	375999.00
600000.00	P-25	"Functional studies of Human Immuno - deficiency Virus Type-2 (HIV-2) Viral protien X (VPX)"	600000.00
500000.00	P-26	Occurrence of Mutations in Non dividing cells of Escherichia Coli"	500000.00
260367.00	P-29	"Development of Hospital Surveillance system by advanced diagnostics method \& Molecular DNA fingerprinting techniques"	260367.00
3746538.00	P-30	"Transcription termination and anti termination in E. Coli"	3746538.00
3131006.00	P-31	Role of K-ras in Lung type II epithelial cells	3131006.00
4857938.00	P-36	"Development of Artificial retina using Bacterio rhodospin and genetically engineered analogues "	4857938.00
358470.00	P-39	"Computational analysis and functional characterization of mycobacterial protien(s) interacting with macrophase effector - APC functions - an approach to understand the molecular basis of pathogenesis of M. tuberculosis"	358470.00
49738.00	P-40	"Antioxidants as a potential immuno adjuvant in anti tuberculosis immunotherapy"	49738.00
3894086.00	P-41	"Construction, characterization and analysis of expressed sequences from silkworm"	3894086.00
9500000.00	P-42	"Structural and functional studies on Mycobacterium tuberculosis heat shock proteins".	9500000.00
11970000.00	P-43	"A generalized mechanism of transcription termination in prokaryotes: a quest for mechanism based transcription inhibitors for microbial pathogens".	11970000.00
3331377.00	P-45	Specialized chromatin structures as epigenetic imprints to distinguish parental alleles".	3331377.00
416137.00	P-46	"Effect of reactive oxygen species (ROS) on immune response : Relevance in immunosuppression and Pathogenesis"	416137.00
377567.00	P-47	Research cum Training for DRDO Programme	377567.00
1413292.00	P-48	'Molecular characterization of human liver stem cells for use in the treatment of hepatic diseases'.	1413292.00
198095.00	P-50	"Cervical cancer prevention by multiple strategies in rural community in Andhra pradesh"	198095.00
401738.00	P-51	"Understanding the mechanism of doxorubicin resistance in breast cancer celline MCF-7"	401738.00
1359129.00	P-52	"Nucleo Cytoplasmic transport of HIV - 1 Vpr "	1359129.00
1114495.00	P-53	Collaborative research project on molecular ecology and systematics	1114495.00
1163764.00	P-56	"Genetics of transcription-replication interplay and of stress adaptation in bacteria"	1163764.00
2131403.00	P-57	Improved genome annotation through a combination of machine learning and experimental methods: Plasmodium falciparum as a case study.	2131403.00
63000.00	P-58	"Indo-Malaysian collaboration in Bioinformatics: Development and maintenance of a web-portal hosting databases and tools of common interest"	63000.00
32974662.00	P-59	"An integrated Approach towards understanding the biology of Mycobacterium tuberculosis: Genetic, biochemical, immunological and structural analyses."	32974662.00
5720800.00	P-60	"National Database of Prevalent Genetic Disorders in India: Development, Curation and Services"	5720800.00
4308314.00	P-62	"HIV - 1 Pathogenesis: Role of Integrate in Reverse Transciption and Nuclear Transport of Viral Genome"	4308314.00
9637574.00	P-63	"Upgradation of the existing computing infrastructure at the Bioinformatics facility at CDFD"	9637574.00
600585.00	P-64	Biotechnology for Leather: Towards cleaner processing phase-II	600585.00
260000.00	P-65	"Molecular, genetic and functional analysis of the chromosomal plasticity region of the gastric pathogen Helicobater pylori"	260000.00
16921476.00	P-65A	APEDA - CDFD Centre for Basmati DNA Analysis	16924622.00
264430.00	P-66	Human Epigenome Variation: Analysis of CpG island methylation in chromosomes 18 and Y , and in some Hox, insulin signaling and chromatin reprogramming genes	264430.00
622747.00	P-67	Identification of novel Esophageal Squamous cell carcinoma (ESCC) genes by using a combination of array-based CGH and gene expression micro arrays	622747.00
235593.00	P-69	ICMR adhoc New Scheme 'Understanding the role of PE/PPE family of M tuberculosis in the activation of HIV	

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
Annexure - II
Details of Fixed Assets Fund (Capitalised portion of Project Grants)
for the year ended 31st March 2012

Previous year	P No	Particulars	Current Year
1012807.00	P-70	virus type I long terminal repeat (HIV-ILTP) Identification of disease causing mutations in familial hypertrophic cardiomyopathy (FHC) patients from Andhra Pradesh	235593.00 1012807.00
1573795.00	P-71	Referral Centre for Genetic fidelity testing of tissue culture raised plants	1573795.00
45653.00	P-72	Nuances of Non coding DNA near insulin-responsive genes	45653.00
1000000.00	P-74	Molecular basic of insect plant interactions in rice under the national fund for basic and strategic research in agriculture	1000000.00
33672.00	P-75	Preparing blueprint for the macromolecular crystallography beamline at Indus-II synchrotron source	33672.00
245266.00	P-76	A study of Molecular Markers in childhood Autism with special references to nuclear factors - APPA B"	245266.00
1543605.00	P-77	Functional characterization of Mycobacterium tuberculosis PE/PPE proteins having SH3 binding domain: Understanding their role in modulating macrophage functions	1543605.00
496826.00	P-79	Understanding the role of AGE proteins in inducing inflammatory responses and its regulation	496826.00
4192480.00	P-80	Referral Centre for Detection of Genetically Modified Foods employing DNA - based Markets	4192480.00
195728.00	P-81A	Financial Assistance for award of JC Bose Fellowship to Dr J Gowrishankar	195728.00
1387806.00	P-82	Functional Genomic Analysis of Candida Glabrata-macrophage	1441427.00
912255.00	P-83	Prokaryotic Transcription Termination Factor, Rho: Mechanism of Action and Biology	912255.00
388583.00	P-83A	Understanding the mechanism of Azadirachtin-mediated cell signaling: role in anti-inflammation and anti-tumorigenesis	388583.00
44854.00	P-84	Preparing for tuberculosis vaccine efficacy trials: Baseline epidemiology, improved diagnosis, markers of protection and phase I/II trials	44854.00
1256286.00	P-84A	Human epigenetic to the rescue of Human Identification process: Entriching human DNA from DNA mixture employing antibodiesdirected against 5-methylcytosine followed by whole genome amplification	1430573.00
374630.00	P-89	Characterization of Mycobacterium tuberculosis transcription machinery and Bacteriophage metagenomics	374630.00
1054715.00	P-90	Role of Yapsins in the Pathobiology of Candida Glabrata	1376869.00
932151.00	P-91	DNMT3L: Epigenetic correlation with cancer	932151.00
8128158.00	P-92	Swarnajayanti Fellowship: Designing transcription anti-terminators: a novel apprach for making new inhibitors of gene expression	8500000.00
2389387.00	P-93	Virtual Centre of Excellence on multidisciplinary approaches aimed at interventions against tuberculosis	2508568.00
246320.00	P-95	Construction of regulatory networks in prokaryotes through protein: Protein interaction predictions and transcription regulation predictions.	246320.00
597647.00	P- 97	Proteome-wide Analysis of Serine pyrophosphorylation by inositol pyrophosphates	918196.00
2624610.00	P-98	Role of cell - cell signaling mediated by Diffusible signaling factor (DSF) in Xanthomonas virulence	2783795.00
2272340.00	P-99	Role of inositol Pyrophosphates in eukaryotic cell growth, proliferation and ribosomae biogenesis	2921729.00
17784.00	P - 100	Effect of reactive oxygen species on T-Cell immune response: An approach to understand the molecular mechanism of immunosuppression during tuberculosis" - National Bioscience Award	17784.00
3391337.00	P-101	Role of inositol pyrophosphates in cell physiology: Investigating the biochemical significance of protein pyrophosphorylation - Senior Fellowship	6276263.00
658171.00	P-102	Understanding the role of Mycobacterium tuberculosis heat shockprotein 60 as Th1/Th2 immuno modular	681121.00
529925.00	P-107	IYBA Project - Mechanism and role of bacterial cell-cell signaling molecules in plant defense response	1000000.00
0.00	P-109	Molecular dissection of PI3-Kinase/Akt pathway by suing proteomics based approach: A study to identify novel potential oncogenes and tumor suppressors	915278.00
0.00	P-113	Clinical and molecular genetic analysis of squamous cell carcinoma of the tongue	268914.00
0.00	P-114	Evaluating the Calcineurin-NFAT Pathway and its regulators superoxide dismutase (SOD) AND RCAN1 (regular of Calcineurin) Down Syndrome	294008.00
0.00	P-115	Setting up of the National Institute of Animal Biotechnology	4580214.00
0.00	P-116	DBT-India and AIST - Japan : Understanding molecular mechanisms controlling dual role of Ras, Sirtuins and CARF in relation to cellular proliferation and senescence: Novel Strategy for developing cancer therapeutics	800000.00
0.00	P-118	Construction of regulatory networks in Mycobacterium tuberculosis through analysis of gene expression data and transcription regulation predictions. (MOU with Russian Foundation)	183443.00
0.00	P-122	Understanding the role of Hox genes in anterior-posterior axis determination of the central nervous system	438084.00
0.00	P-123	Establishment and Implementation of the Indo-German DST -MPG (Max Planck Society) Partner Group on Genetic Diversity Studies	101800.00
268914.00	P-127	Systematic studies on the functional network of phosphatases in cell life and death	2225907.00
11713327.00	COE-I	COE for Genetics and Genomics of silkmoths	11713327.00
10000000.00	COE-II	DBT Centre of Excellence for Microbial Biology	10000000.00
239766747.00		Total	254856786.00

Annexure: A F	CENTRE FOR DNA FINGERPRINTI FOR THE YEAR ENDED 31	
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	I-Remittances	
342116.00	GSLI	225224.00
3545182.00	Income tax	5678791.00
892851.00	LIC	1102504.00
440959.00	Professional tax	546897.00
371342.00	Works Tax	14920.00
211659.00	Service Tax	166864.00
781320.00	PPF	1574630.00
6585429.00		9309830.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012

Annexure: B Forming part of Receipts \& Payment a/c

Previous Year Amount Rs.		Particulars
	T.D.S.Recoveries	Current Year Amount
380647.00	TDS on professional service	
1544357.00	TDS on Rent	753967.00
872899.00	TDS on works / Contractors	2532661.00
6386.00	TDS on Deposits	1454181.00
$\mathbf{2 8 0 4 2 8 9 . 0 0}$		0.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012		
Annexure: C Forming part of Receipts \& Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	Advance refunds/recovery/Adjst.	
733288.00	Advances for Consumables	14201834.00
29703699.00	Advances for Equipment	107532410.00
202181.00	Advances to staff for L.P	443063.00
0.00	Deposits - Customs duty	14429932.00
23092222.00	EMD / Margin money	310300.00
92400.00	Festival Advances recovery	118725.00
16267.00	HBA	0.00
204000.00	HSD, LSD \& TSD	217360.00
1311816.00	LTC Advances	335803.00
73100.00	Other Advances	157634.00
154519.00	Revolving Advances	301909.00
3682761.00	TA/DAAdvances	4513584.00
37728.00	Vehicle / Conveyance advance	37500.00
249080.00	Royalties \& Consultancy	233890.00
50000.00	Security Deposit / Retension Money	533750.00
24200.00	Computer Advance - staff	41200.00
0.00	Rent advance	0.00
40838.00	Computer Advance - Research Fellows	201249.00
0.00	NIMS-Advance	582180.00
0.00	CDFD Staff Reserve Fund	2644290.00
59668099.00		146836613.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
 FOR THE YEAR ENDED 31st MARCH 2012

Annexure: D Forming part of Receipts \& Payment a/c

Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	Projects - Receipts	
9566000.00	P-65A	5103400.00
159363.00	P-69	0.00
1808000.00	P-71	1020000.00
751300.00	P-79	1795900.00
951800.00	P- 81	0.00
1455000.00	P-81A	1300000.00
596000.00	P- 82	839000.00
714000.00	P-84A	0.00
1480000.00	P-88	0.00
300000.00	P-89	300000.00
0.00	P-90	618700.00
3132400.00	P-92	3500000.00
657000.00	P-93	2010000.00
700000.00	P-95	0.00
1251970.00	P-96	1452712.00
835000.00	P-97	532000.00
290000.00	P-98	1641200.00
0.00	P-99	726299.00
6784587.00	P-101	4470916.00
1181319.00	P-102	1086164.00
300000.00	P-103	0.00
1437000.00	P-104	0.00
827000.00	P-105	681000.00
238302.00	P-106	1602302.00
2027000.00	P-107	773000.00
487000.00	P-108	470400.00
2027000.00	P-109	742000.00
170000.00	P-110	0.00
1400000.00	P-111	1511500.00
1460000.00	P-112	1000000.00
1139487.00	P-113	848689.00
2070000.00	P-114	0.00
5000000.00	P-115	65500000.00
2037200.00	P-116	0.00
5593000.00	P-117	0.00
1400770.00	P-118	0.00
800000.00	P-119	0.00
827000.00	P-120	0.00
345776.00	P-121	0.00
0.00	P-122	13606258.00
0.00	P-123	2884810.00
0.00	P-124	819000.00
0.00	P-125	764000.00
0.00	P-126	2539300.00
0.00	P-127	11097596.00
0.00	P-128	2807200.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012

Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	Projects - Receipts	
0.00	P-129	306000.00
0.00	P-130	5987000.00
0.00	P-131	1899200.00
0.00	P-132	929200.00
0.00	P-133	1849000.00
0.00	P-134	400000.00
0.00	P-135	7943200.00
0.00	P-136	837200.00
0.00	P-137	1500000.00
0.00	P-139	2467200.00
0.00	P-144	267184.00
8913000.00	COE-I	22433000.00
13680000.00	COE-II	8570000.00
84793274.00		189431530.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012		
Annexure: E Forming part of Receipts \& Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	Advances	
394883.00	Advance to staff for Local purchases	264000.00
9093263.00	Advances for Consumables	13039405.00
22723544.00	Advances for Equipment	28472236.00
3011292.00	Deposits for Custom duty etc.,	9667900.00
20538000.00	EMD / Margin money	2178922.00
99000.00	Festival advances paid	131250.00
79000.00	LSD , HSD \& TSD	140000.00
928731.00	LTC Advance	1118680.00
181729.00	Other Advances	376415.00
182500.00	Revolving Advance	223500.00
3659524.00	TA/ DAAdvance	3785265.00
0.00	Royalties \& Consultancy	1239852.00
410000.00	Security Deposit / Retension Money	9750.00
245000.00	Computer Advance - Research Fellows	35000.00
0.00	Computer Advance - Staff	30000.00
0.00	NIMS Advance	916289.00
0.00	RentAdvance	64000.00
0.00	Vehicle Advance	60000.00
0.00	Indo Canada Workshop	538860.00
61546466.00		62291324.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012		
Annexure: F Forming part of Receipts \& Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	I-Remittances paid	
402196.00	GSLI	210600.00
3559943.00	Income tax	5622209.00
892851.00	LIC	1099954.00
441639.00	Professional tax	544966.00
318037.00	Works Tax	26093.00
211659.00	Service Tax	166864.00
768160.00	PPF	1570900.00
6594485.00		9241586.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012		
Annexure: G Forming part of Receipts \& Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	TDS remitted in Central Govt. a/c	
327736.00	TDS on professional service	862005.00
1539198.00	TDS on Rent	2412648.00
835074.00	TDS on works / Contractors	1434409.00
6386.00	TDS on deposits	0.00
2708394.00		4709062.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
 FOR THE YEAR ENDED 31st MARCH 2012

Annexure: H Forming part of Receipts \& Payment a/c

Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	Projects - Expenditure	
79206.00	P-30	0.00
80930.00	P-31	0.00
17821.00	P-42	0.00
68142.00	P-43	0.00
18356.00	P-45	0.00
0.00	P-49A	29363.00
661793.00	P-65A	2547094.00
784241.00	P-71	412681.00
2194.00	P-77	0.00
16258.00	P-79	0.00
25523.00	P-80	554228.00
152737.00	P-81	70745.00
1347200.00	P-81A	1345180.00
848007.00	P-82	1106732.00
62560.00	P-83	0.00
40065.00	P-83A	0.00
693319.00	P-84A	783120.00
185254.00	P-85	0.00
78291.00	P-86	0.00
1022465.00	P-88	740000.00
300000.00	P-89	0.00
825212.00	P-90	802987.00
961218.00	P-91	311836.00
4297631.00	P-92	3521916.00
2159039.00	P-93	2832707.00
154490.00	P-95	424041.00
720897.00	P-96	796770.00
929176.00	P-97	1118988.00
1569461.00	P-98	1237665.00
1777257.00	P-99	1874442.00
300000.00	P-100	35000.00
6384457.00	P - 101	6430446.00
1142771.00	P-102	558377.00
300000.00	P-103	300000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012 Annexure: H Forming part of Receipts \& Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	Projects - Expenditure	
1139387.00	P-104	1692479.00
681029.00	P-105	917815.00
684358.00	P-106	965294.00
1424994.00	P-107	1311406.00
302977.00	P-108	584498.00
550896.00	P-109	1902478.00
145611.00	P-110	193068.00
911369.00	P-111	1568400.00
656274.00	P-112	1803726.00
588772.00	P-113	864774.00
537239.00	P-114	1481208.00
440695.00	P-115	62019564.00
344383.00	P-116	1981237.00
341500.00	P-117	5251500.00
285000.00	P-118	1115770.00
239658.00	P-119	1298947.00
210000.00	P-120	492400.00
308680.00	P-121	634282.00
0.00	P-122	2127215.00
0.00	P-123	810754.00
0.00	P-124	651716.00
0.00	P-125	610000.00
0.00	P-126	957685.00
0.00	P-127	6044881.00
0.00	P-128	753613.00
0.00	P-130	1800000.00
0.00	P-131	716265.00
0.00	P-132	294877.00
0.00	P-133	300000.00
0.00	P-134	146000.00
0.00	P-135	525000.00
37209825.00	COE-I	12344655.00
12049954.00	COE - II	12948013.00
87058572.00		154943838.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012		
Annexure: I Forming part of Balance Sheet		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	CDFD C.P. FUND ACCOUNT	
27346637.32	Opening Balance	33724337.32
	Add:	
6786724.00	Employees subscription / refunds	7891447.00
769851.00	Transfer from other departments	62280.00
3123315.00	Institute contribution (incl. Projects staff)	3323326.00
68411.00	Interest received	85173.00
38094938.32		45086563.32
4370601.00	Less:Advances/withdrawals/Transfer/ Adjst	15927187.00
33724337.32		29159376.32

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012		
Annexure: J Forming part of Balance sheet		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	LOANS AND ADVANCES	
70828689.00	Advances for Consumables	69666260.00
147138287.45	Advances for Equipment	68078113.45
427282.50	Advances to staff for L.P	248219.50
25512.00	DBT PDF (Stipend receivable)	25512.00
65400.00	Festival Advance	77925.00
4310.00	G.S.L.I Recovery	4310.00
907246.00	Grant receivable - Host meetings	907246.00
199287.00	LTC Advance	982164.00
5040103.00	Other Advances	5258884.00
240569.00	Rent advance	304569.00
161646.00	Revolving Advances	83237.00
611994.56	TA/DAAdvance \& Recoupments	0.00
3000000.00	CDFD Staff Reserve Fund	355710.00
1396829.00	DBT JRF A/c (Stipend receivable)	1158629.00
4866183.00	EMRC A/c (Stipend receivable)	10618518.00
383904.00	ICMR A/c (Stipend receivable)	1597907.00
681501.00	Indo - Japan Workshop	681501.00
10000000.00	NIMS - Advance	10334109.00
72.00	Service Tax	72.00
2058481.00	UGC (Stipend receivable)	0.00
394494.00	Advance for workshop	394494.00
204162.00	Computer advance - Research Fellows	37913.00
9350.00	CPFAdvance Recovery	0.00
17109.00	DST Inspire	13748.00
417047.00	Transcription Assembly Meeting	417047.00
249079458.51		171246087.95

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012		
Annexure: K Forming part of Balance sheet		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	DEPOSITS	
4317957.00	A.P.Transco	4985857.00
14713171.00	Balmer Lawrie - Customs duty	3295239.00
35900.00	Gas agencies	35900.00
15000.00	Internet	15000.00
185000.00	Telephones	185000.00
47680.00	APSRTC	47680.00
12000.00	University Filling Station	0.00
0.00	Vimta Labs	6000000.00
18699.00	Others	18699.00
19345407.00		14583375.00

CENTRE FOR DNA FINGERPRIN FOR THE YEAR ENDED Annexure: L Forming part of Balance sheet		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	INVESTMENT A/C	
12270000.00	Internal resources / Core	0.00
54738000.00	Project Funds	51098273.00
10600000.00	Collaboration Funds	10600000.00
700000.00	Workshop funds	700000.00
78308000.00		62398273.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2012		
Annexure: M	Forming part of Balance sheet	
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	CDFD C.P.FUND INVESTMENT A/C	
660170.00	60229.549 Units of UTI BOND FUND	660170.00
276190.00	21616.5080 Units of UTI BOND FUND	276190.00
28702519.00	Fixed deposits	23202519.00
4085458.32	CDFD C.P.FUND a/c	5020497.32
27346637.32		29159376.32

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-03 : D.B.T Project on "TRANSGENESIS \& GENETIC BASIS OF PATHOGEN RESISTANCE IN THE SILKWORM, Bombyx mori" P.I. Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{array}{r} 630047.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$	Opening Balance Equipment Salaries - Manpower Consumables Travel Contingencies	$\begin{array}{r} 630047.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$
$\begin{array}{r} \hline 0.00 \\ 630047.00 \end{array}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 630047.00 \end{array}$	$\begin{aligned} & 630047.00 \\ & 630047.00 \end{aligned}$		$\begin{aligned} & 630047.00 \\ & 630047.00 \end{aligned}$
630047.00		630047.00	630047.00		630047.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-10 : DST Project on "ROLE OF UPSTREAM SEQUENCE ELEMENTS IN HYPERACTIVATION OF TRANSCRIPTION FROM baculovirus polyhedrin gene promoter" P.I. Dr M D BASHYAM RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{aligned} & \text { Previous Year } \\ & \text { Amount } \quad \text { Rs } \end{aligned}$	Receipts	$\begin{gathered} \text { Current Year } \\ \text { Amount } \\ \text { Rs. } \end{gathered}$	$\begin{aligned} & \text { Previous Year. } \\ & \text { Amount } \end{aligned}$	Payments	$\begin{gathered} \text { Current Year } \\ \text { Amount } \quad \text { Rs } \end{gathered}$
0.00	Opening Balance	0.00	28332.00	Opening Balance	28332.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	28332.00		28332.00
28332.00	Excess of expenditure over income	28332.00			
28332.00		28332.00	28332.00		28332.00

P.I I Dr J GOWRISHANKAR RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{array}{lr} \text { Previous } & \text { Year } \\ \text { Amount } \end{array}$	Receipts	$\begin{aligned} & \text { Current Year } \\ & \text { Amount } \quad \text { Rs. } \end{aligned}$	Previous Year. Amount Rs	Payments	$\begin{array}{cc} \hline \text { Current Year } \\ \text { Amount } \end{array}$
$\begin{array}{r} 6737.00 \\ 0.00 \end{array}$	Opening Balance Grant in aid	$\begin{array}{r} 6737.00 \\ 0.00 \end{array}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	Salaries- Manpower Consumables Contingencies Travel Overheads Equipment	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$
6737.00		6737.00	$\begin{array}{r} 0.00 \\ 6737.00 \\ \hline \end{array}$	Closing balance	0.00 6737.00
6737.00		6737.00	6737.00		6737.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-17 : DST Project on "STUDIES ON INOSITAL - PHOSPHATE SYNTHESIS - A NOVEL ENZYME FROM MYCOBACTERIUM TUBERCULOSIS - H37RV" P.I. Dr SHEKHAR C MANDE RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{aligned} & \text { Previous Year } \\ & \text { Amount } \end{aligned}$	Receipts	$\begin{gathered} \text { Current Year } \\ \text { Amount } \\ \text { Rs. } \end{gathered}$	Previous Year. Amount Rs	Payments	$\begin{array}{cc} \text { Current Year } \\ \text { Amount } \end{array}$
$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	687887.00 0.00 0.00 0.00 0.00 0.00 0.00	Opening Balance Salaries - Manpower Consumables Contingencies Travel Over heads Equipment	687887.00 0.00 0.00 0.00 0.00 0.00 0.00
$\begin{array}{r} 0.00 \\ 687887.00 \end{array}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 687887.00 \end{array}$	687887.00		687887.00
687887.00		687887.00	687887.00		687887.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-18 : DST Project on "MAPPING OF RECEPTOR BINDING SITE ON THE EYTHROCYTE BINDING OF MALARIA PARASITE" p.I I Dr AKASH RANJAN RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	$\begin{array}{cc} \hline \text { Current Year } \\ \text { Amount } & \text { Rs. } \end{array}$	Previous Year. Amount Rs	Payments	$\begin{aligned} & \text { Current Year } \\ & \text { Amount } \quad \text { Rs } \end{aligned}$
0.00	Opening Balance	0.00	274286.00	Opening balance	274286.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	274286.00		274286.00
274286.00	Excess of expenditure over income	274286.00			
274286.00		274286.00	274286.00		274286.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-20 : DBT Project on "GENOMIC MICRO ARRAY R\&D PROGRAMMES ON INFECTIOUS DISEASES AND NEUROLOGICAL DISORDERS" P.I: Dr M D BASHYAM RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			1888111.00	Opening balance	1888111.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	1888111.00		1888111.00
1888111.00	Excess of expenditure over income	1888111.00	0.00	Closing balance	0.00
1888111.00		1888111.00	1888111.00		1888111.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-23: DBT Project on "DEVELOPMENT OF PCR BASE ASSAYS FOR DETECTION OF GMO'S" P.I. Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	34495.00 0.00 0.00 0.00 0.00 0.00 0.00	Opening balance Salaries- Manpower Consumables Contingencies Travel Overheads Equipment	$\begin{array}{r} 34495.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \end{array}$
$\begin{array}{r} 0.00 \\ 34495.00 \end{array}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 34495.00 \end{array}$	$\begin{array}{r} \hline 34495.00 \\ 0.00 \end{array}$	Closing balance	$\begin{array}{r} \hline 34495.00 \\ 0.00 \end{array}$
34495.00		34495.00	34495.00		34495.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-25 : DBT Project on "FUNCTIONAL STUDIES OF HUMAN IMMUNO DEFICIENCY VIRUS TYPE-2(HIV-2), VIRAL PROTEIN X(VPX)" P.I . Dr S MAHALINGAM RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	529111.00 0.00 0.00 0.00 0.00 0.00 0.00	Opening balance Salaries- Manpower Consumables Contingencies Travel Overheads Equipment	$\begin{array}{r} 529111.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ \hline \end{array}$
$\begin{array}{r} 0.00 \\ 529111.00 \end{array}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 529111.00 \end{array}$	529111.00		529111.00
529111.00		529111.00	529111.00		529111.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-26 : IFCPAR Project on "OCCURRENCE OF MUTATIONS IN NON-DIVIDING CELLS OF ESCHERICHIA COLI" P.I. Dr J GOWRISHANKAR RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year
			79533.00	Opening balance	79533.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	79533.00		79533.00
79533.00	Excess of expenditure over income	79533.00			
79533.00		79533.00	79533.00		79533.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-28 : IFCPAR Project on "BACULOVIRUS - RESISTANCE IN TRANSGENIC SILKWORMS" P.I. Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			37624.00	Opening balance	37624.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	37624.00		37624.00
37624.00	Excess of expenditure over income	37624.00			
37624.00		37624.00	37624.00		37624.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-30 : NIH Project on "TRANSCRIPTION TERMINATION AND ANTI TERMINATION IN E. COLI" P.I. Dr RANJAN SEN RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount	Payments	Current Year
2124902.00	Opening Balance Grant in aid	2045696.00	79206.00	Salaries- Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
2124902.00		2045696.00	79206.00		0.00
			2045696.00	Closing balance	2045696.00
2124902.00		2045696.00	2124902.00		2045696.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-31 : NIH Project on "FUNCTIONING OF K-RAS IN LUNG TYPE II EPITHELIAL CELLS" P.I . Dr GAYATRI RAMAKRISHNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
827383.00	Opening Balance Grant in aid	746543.00	80930.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
827383.00		746543.00	80930.00		0.00
			746453.00 .00	Closing balance	746543.00
827383.00		746543.00	827383.00		746543.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-33: DBT Project on "MOLECULAR AND EPIDEMIOLOGICAL CHARACTERISATION OF CRYPTOSPORIDIUM - AN ENTERIC PROTOZOON PARASITE" P.I. Dr A RADHA RAMA DEVI RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			234000.00	Opening balance	234000.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	234000.00		234000.00
234000.00	Excess of expenditure over income	234000.00			
234000.00		234000.00	234000.00		234000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-34 : DBT Project on "MOLECULAR ANALYSIS OF LEPIDOPTERAN - SPECIFIC IMMUNE PROTIENS FROM SILKMOTHS" P.I. Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Amount
26334.00	Opening Balance	26334.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Travel Overheads	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$
			0.00	Equipment	0.00
26334.00		26334.00	0.00		0.00
			26334.00	Closing balance	26334.00
26334.00		26334.00	26334.00		26334.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-35 : DST Project on "IDENTIFICATION, CHARACTERIZATION AND PHYSICAL MAPPING OF Z-CHROMOSOME LINKED GENES OF THE SILKWORM, BOMBYX MOR P.I . Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	283883.00	Opening balance	283883.00
0.00			0.00	Salaries - Manpower	0.00
0.00			0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00	Excess of expenditure over income	0.00	0.00		0.00
283883.00		283883.00			
283883.00		283883.00	283883.00		283883.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-36 : DBT Multicentric project on "DEVELOPMENT OF ARTIFICIAL RETINA USING BACTERIORHODOSPIN AND GENETICALLY ENGINEERED ANALOGUES" AT CDF P.I. Dr SHEKAR C MANDE RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Rs
2073896.00	Opening Balance Grant in aid	2073896.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
2073896.00		2073896.00	0.00		0.00
			2073896.00	Closing balance	2073896.00
2073896.00		2073896.00	2073896.00		2073896.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-40 : DST Project on "ANTIOXIDANTS AS A POTENTIAL IMMUNO-ADJUVANT IN ANTI-TUBERCULOSIS IMMUNOTHERAPY" P.I. Dr SANGITA MUKHOPADHYAY RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount	Payments	Current Year Amount Rs
			226058.00	Opening balance	226058.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
$\begin{array}{r} 0.00 \\ 226058.00 \end{array}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 226058.00 \end{array}$	226058.00		226058.00
226058.00		226058.00	226058.00		226058.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-41 : DBT Project on "CONSTRUCTION AND CHARACTERIZATION AND ANALYSIS OF EXPRESSED SEQUENCES FROM SILKWORM" P.I. Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year
			0.00	Opening balance	0.00
1873605.00	Opening Balance	1873605.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
1873605.00		1873605.00	0.00		0.00
0.00	Excess of expenditure over income	0.00	1873605.00	Closing balance	1873605.00
1873605.00		1873605.00	1873605.00		1873605.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-43 : The Wellcome Trust, UK Project on "A GENERALISED MECHANISM OF TRANSCRIPTION TERMINATION IN PROKARYOTES: A QUEST FOR MECHANISM BASED TRANSCRIPTION INHIBITORS FOR MICROBIAL PATHOGENS" P.I. Dr RANJAN SEN RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
754048.70	Opening Balance Grant in aid	685906.70	68142.00	Salaries- Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
754048.70		685906.70	68142.00		0.00
			685906.70	Closing balance	685906.70
754048.70		685906.70	754048.70		685906.70

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-44 : DBT Project on "UNDERSTANDING THE ROLE OF RAS AND NO /INOS SIGNALLING IN PROMOTION OF HEPATOCELLULAR CARCINOMAS WITH PERSISTENT HBV INFECTION" P.I . Dr GAYATRI RAMAKRISHNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			457538.00	Opening balance	457538.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
$\begin{array}{r} 0.00 \\ 457538.00 \end{array}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 457538.00 \end{array}$	457538.00		457538.00
457538.00		457538.00	457538.00		457538.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-48 DBT Project on " MOLECULAR CHARACTERIZATION OF HUMAN LIVER STEM CELLS FOR USE IN THE TREATMENT OF HEPATIC DISEASES" P.I. Dr SANJEEV KHOSLA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{aligned} & \text { Previous Year } \\ & \text { Amount } \end{aligned}$	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	$\begin{gathered} \text { Current Year } \\ \text { Amount } \end{gathered}$
151826.00	Opening Balance	151826.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
151826.00		151826.00	0.00		0.00
			151826.00	Closing balance	151826.00
151826.00		151826.00	151826.00		151826.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-49 A: "GRANT SANCTIONED BY INTERNATIONAL ATOMIC ENERGY" - P.I . Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
$\begin{array}{r} 470313.00 \\ 0.00 \end{array}$	Opening Balance Grant in aid	$\begin{array}{r} 470313.00 \\ 0.00 \end{array}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \\ & 0.00 \end{aligned}$	Salaries- Manpower Consumables Contingencies Travel Overheads Equipment	$\begin{array}{r} 0.00 \\ 0.00 \\ 0.00 \\ 29363.00 \\ 0.00 \\ 0.00 \end{array}$
470313.00		470313.00	$\begin{array}{r} 0.00 \\ 470313.00 \end{array}$	Closing balance	$\begin{array}{r} 29363.00 \\ 440950.00 \end{array}$
470313.00		470313.00	470313.00		470313.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-51: DST Project on " UNDERSTANDING THE MECHANISM OF DOXORUBICIN RESISTANCE IN BREAST CANCER CELLINE MCF-7 P.I. Dr SUNIL KUMAR MANNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			284065.00	Opening Balance	284065.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	284065.00		284065.00
284065.00	Excess of expenditure over income	284065.00			
284065.00		284065.00	284065.00		284065.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-55: DBT Project on " IDENTIFICATION OF DNA MARKERS FOR BACULOVIRUS RESISTANCE IN SILKWORM, BOMBYX MORr' P.I. Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
224.00	Opening Balance Grant in aid	224.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
224.00		224.00	0.00		0.00
				Closing Balance	
224.00		224.00	224.00		224.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-59: DBT Project on "AN INTEGRATED APPROACH TOWARDS UNDERSTANDING THE BIOLOGY OF MYCOBACTERIUM TUBERCULOSIS: GENETIC, BIOCHEMIC IMMUNOLOGICAL AND STRUCTURAL ANALYSES" P.I. - Dr S E HASNAIN, Dr J GOWRISHANKAR, Dr SHEKHAR C MANDE \& Dr RANJAN SEN RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Opening Balance Grant in aid	0.000.00	2215024.00	Opening Balance	2215024.00
			0.00	Salaries - Manpower	0.00
			0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment Closing Balance	0.00
0.00	Excess of expenditure over income	0.00	2215024.00		2215024.00
		2215024.00	0.00		0.00
2215024.00		2215024.00 2215024.00		2215024.00	
CENTRE FORDNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-60: DBT Project on "NATIONAL DATABASE OF PREVALENT GENETIC DISORDERS IN INDIA: DEVELOPMENT, CURATION AND SERVICES" P.I. Dr H A NAGARAJARAM RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{aligned} & \text { Previous Year } \\ & \text { Amount } \quad \text { Rs } \end{aligned}$	Receipts	$\begin{gathered} \text { Current Year } \\ \text { Amount } \end{gathered}$	Previous Year. Amount Rs	Payments	$\begin{gathered} \hline \text { Current Year } \\ \text { Amount } \\ \text { Rs } \end{gathered}$
482124.00	Opening Balance Grant in aid	$\begin{array}{r} 482124.00 \\ 0.00 \end{array}$	0.00	Salaries - Manpower Consumables Contingencies Travel Overheads Equipment	0.00 0.00 0.00 0.00 0.00 0.00
0.00			0.00		
			0.00		
			0.00		
			0.00		
			0.00		
482124.00		482124.00	0.00		0.00
			482124.00	Closing Balance	482124.00
482124.00		482124.00	482124.00		482124.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-63: DBT Project on "UPGRADATION OF THE EXISTING COMPUTING INFRASTRUCTURE AT THE BIOINFORMATICS FACILITY AT CDFD" P.I. Dr SEYED E HASNAIN RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	837574.00 0.00 0.00 0.00 0.00 0.00 0.00	Opening balance Salaries -Manpower Consumables Contingencies Travel Overheads Equipment	837574.00 0.00 0.00 0.00 0.00 0.00 0.00
$\begin{array}{r} 0.00 \\ 837574.00 \\ \hline \end{array}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 837574.00 \\ \hline \end{array}$	837574.00		837574.00
837574.00		837574.00	837574.00		837574.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-64: NMITLI Project on "BIOTECHNOLOGY FOR LEATHER: TOWARDS CLEANER PROCESSING PHASE - II" P.I. Dr J GOWRISHANKAR RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03 .2012					
$\begin{aligned} & \hline \text { Previous Year } \\ & \text { Amount } \quad \text { Rs } \end{aligned}$	Receipts	$\begin{array}{cc} \hline \text { Current } & \text { Year } \\ \text { Amount } & \text { Rs. } \end{array}$	Previous Year. Amount Rs	Payments	$\begin{array}{cc} \hline \text { Current Year } \\ \text { Amount } \end{array}$
			158.00	Opening Balance	158.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	158.00		158.00
158.00	Excess of expenditure over income	158.00			
158.00		158.00	158.00		158.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-65: DST Project on "MOLECULAR, GENETIC AND FUNCTIONAL ANALYSIS OF THE CHROMOSOMAL PLASTICITY REGION OF THE GASTRIC PATHOGEN HELICOBACTER PYLORI" P.I. Dr AYESHA ALVI RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			582647.00	Opening balance	582647.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	582647.00		582647.00
582647.00	Excess of expenditure over income	582647.00	0.00	Closing balance	0.00
582647.00		582647.00	582647.00		582647.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-66: DBT Project on "HUMAN EPIGENOME VARIATION: ANALYSIS OF CPG ISLAND METHYLATION IN CHROMOSOMES 18 AND Y, AND IN SOME HOX, INSULIN SIGNALING AND CHROMATIN REPROGRAMMING GENES" P.I. Dr SANJEEV KHOSLA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			684722.00	Opening Balance	681246.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	681246.00		681246.00
681246.00	Excess of expenditure over income	681246.00	0.00	Closing Balance	0.00
681246.00		681246.00	681246.00		681246.00

P-67: DBT Project on "IDENTIFICATION OF NOVEL ESOPHAGEAL SQUAMOUS CELL CARCINOMA (ESCC) GENES BY USING A COMBINATION OF ARRAY-BASED GENE EXPRESSION MICROARRAYS" P.I. Dr M D BASHYAM RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{aligned} & \text { Previous Year } \\ & \text { Amount } \end{aligned}$	Receipts	$\begin{array}{cc} \text { Current } \\ \text { Amount } \\ \text { Rs. } \end{array}$	Previous Year. Amount Rs	Payments	$$
			113545.00	Opening Balance	113545.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	113545.00		113545.00
113545.00	Excess of expenditure over income	113545.00			
113545.00		113545.00	113545.00		113545.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-68: DST Project on "IDENTIFICATION OF HIGH RISK INDIVIDUAL WITH PRECANCEROUS STATES OF ESOPHAGAL CANCER" P.I. Dr GAYATRI RAMAKRISHNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Amount
			59874.00	Opening Balance	59874.00
0.00	Opening Balance	0.00	0.00	Salaries- Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	59874.00		59874.00
59874.00	Excess of expenditure over income	59874.00	0.00	Closing Balance	0.00
59874.00		59874.00	59874.00		59874.00

P-70: DBT Project on	CENT "IDENTIFICATION OF DISEASE CAU RECEI	DNA FINGERPRINTIN IUTATIONS IN FAMIL P.I. Dr M D PAYMENTS ACCO	AND DIAGNOSTICS HYPERTROPHIC BASHYAM T FROM 01.04.2011	YDERABAD RDIOMYOPATHY (FHC) O 31.03.2012	ANDHRA PRADESH"
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			21336.00	Opening Balance	21336.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	21336.00		21336.00
21336.00	Excess of expenditure over income	21336.00	0.00	Closing Balance	0.00
21336.00		21336.00	21336.00		21336.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-72: DST Project on "NUANCES OF NON-CODING DNA NEAR INSULIN-RESPONSIVE GENES" P.I. Dr NIRMALA YABALURI RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount
$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	1421653.00 0.00 0.00 0.00 0.00 0.00 0.00	Opening balance Salaries- Manpower Consumables Contingencies Travel Overheads Equipment	1421653.00 0.00 0.00 0.00 0.00 0.00 0.00
$\begin{array}{r} 0.00 \\ 1421653.00 \end{array}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 1421653.00 \end{array}$	1421653.00		1421653.00
1421653.00		1421653.00	1421653.00		1421653.00

P.I. Dr M D BASHYAM RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	0.00	857136.00 0.00 0.00 0.00 0.00 0.00 0.00	Opening Balance Salaries - Manpower Consumables Contingencies Travel Overheads Equipment	857136.00 0.00 0.00 0.00 0.00 0.00 0.00
$\begin{array}{r} 0.00 \\ 857136.00 \end{array}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 857136.00 \end{array}$	857136.00		857136.00
857136.00		857136.00	857136.00		857136.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-75: DST Project on "PREPARING BLUEPRINT FOR THE MACROMOLECULAR CRYSTALLOGRAPHY BEAMLINE AT INDUS-II SYNCHROTRON SOURCE" P.I. Dr SHEKAR C MANDE RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			10840.00	Opening Balance	10840.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	10840.00		10840.00
10840.00	Excess of expenditure over income	10840.00	0.00	Closing Balance	0.00
10840.00		10840.00	10840.00		10840.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-77 : DBT project on "FUNCTIONAL CHARACTERIZATION OF MYCOBACTERIUM TUBERCULOSIS PE/PPE PROTEINS HAVING SH3 BINDING DOMAIN: UNDERSTANDING THEIR ROLE IN MODULATING MACROPHAGE FUNCTIONS" P.I. Dr SANGITA MUKHOPADHYAY RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			0.00	Opening Balance	0.00
126471.00	Opening Balance	124277.00	0.00	Salaries- Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			2194.00	Equipment	0.00
126471.00		124277.00	2194.00		0.00
0.00	Excess of expenditure over income	0.00	124277.00	Closing Balance	124277.00
126471.00		124277.00	126471.00		124277.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-79: DRDO project on "UNDERSTANDING THE ROLE OF AGE PROTEINS IN INDUCING INFLAMMATORY RESPONSES AND ITS REGULATION" P.I.. Dr SUNIL KUMAR MANNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
	Opening Balance Grant in aid	$\begin{array}{r} 0.00 \\ 1795900.00 \end{array}$	2636028.00	Opening Balance	1900986.00
0.00			16258.00	Salaries- Manpower	0.00
751300.00			0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
751300.00	Excess of expenditure over income	1795900.00	2652286.00		1900986.00
1900986.00		105086.00	0.00	Closing Balance	0.00
2652286.00		1900986.00	2652286.00		1900986.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-80: DBT Project on "REFERRAL CENTRE FOR DETECTION OF GENETICALLY MODIFIED FOODS EMPLOYING DNA - BASED MARKETS" P.I. Dr N MADHUSUDAN REDDY RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	28471.00 25523.00 0.00 0.00 0.00 0.00 0.00	Opening Balance Salaries- Manpower Consumables Contingencies Travel Overheads Equipment Project funds Refund	53994.00 0.00 0.00 0.00 0.00 0.00 554228.00
0.00		0.00	53994.00		608222.00
53994.00	Excess of expenditure over income	608222.00	0.00	Closing Balance	0.00
53994.00		608222.00	53994.00		608222.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-81: DBT project on "RECONSTRUCTING CELLULAR NETWORKS: TWO COMPONENT REGULATORY SYSTEMS" P.I.. Dr SHEKAR C MANDE RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
$\begin{array}{r} 0.00 \\ 951800.00 \end{array}$	Opening Balance Grant in aid	$\begin{array}{r} 214215.00 \\ 0.00 \end{array}$	584848.00 152737.00 0.00 0.00 0.00 0.00 0.00	Opening Balance Salaries- Manpower Consumables Contingencies Travel Overheads Equipment	0.00 70745.00 0.00 0.00 0.00 0.00 0.00
951800.00	Excess of expenditure over income	214215.00	$\begin{aligned} & \hline 737585.00 \\ & 214215.00 \\ & \hline \end{aligned}$	Closing Balance	$\begin{array}{r} 70745.00 \\ 143470.00 \\ \hline \end{array}$
951800.00		214215.00	951800.00		214215.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-81A : DST project : FINANCIAL ASSISTANCE FOR AWARD OF JC BOSE FELLOWSHIP TO DrJ GOWRISHANKAR RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	107800.00	280000.00	Salaries- Manpower	300000.00
1455000.00		1300000.00	630841.00	Consumables	650000.00
			0.00	Contingencies	0.00
			258321.00	Travel	335180.00
			60000.00	Overheads	60000.00
			118038.00	Equipment Closing Balance	0.00
1455000.00		1407800.00	1347200.00		1345180.00
			107800.00		62620.00
1455000.00		1407800.00	1455000.00		1407800.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-82: DBT project on "FUNCTIONAL GENOMIC ANALYSIS OF CANDIDA GLABRATA-MACROPHAGE" P.I. Dr RUPINDER KAUR RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03 .2012					
$\begin{aligned} & \text { Previous Year } \\ & \text { Amount } \end{aligned}$	Receipts	$\begin{array}{cc} \text { Current } \\ \text { Year } \\ \text { Amount } & \text { Rs. } \end{array}$	Previous Year. Amount Rs	Payments	$\begin{aligned} & \text { Current Year } \\ & \text { Amount } \end{aligned}$
675598.00	Opening Balance	423591.00	186642.00	Salaries- Manpower	228020.00
596000.00	Grant in aid	839000.00	300000.00	Consumables	800000.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			110609.00	Overheads	25091.00
			250756.00	Equipment	53621.00
1271598.00		1262591.00	848007.00		1106732.00
0.00	Excess of expenditure over income	0.00	423591.00	Closing Balance	155859.00
1271598.00		1262591.00	1271598.00		1262591.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-83: DBT project on "PROKARYOTIC TRANSCRIPTION TERMINATION FACTOR, RHO: MECHANISM OF ACTION AND BIOLOGY" P.I. Dr RANJAN SEN RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{aligned} & \text { Previous Year } \\ & \text { Amount } \quad \text { Rs } \end{aligned}$	Receipts	$\begin{array}{cc} \hline \text { Current Year } \\ \text { Amount } & \text { Rs. } \end{array}$	Previous Year. Amount Rs	Payments	$\begin{array}{cc} \hline \text { Current Year } \\ \text { Amount } & \text { Rs } \end{array}$
			1093034.00	Opening Balance	1155594.00
0.00	Opening Balance	0.00	62560.00	Salaries- Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	1155594.00		1155594.00
1155594.00	Excess of expenditure over income	1155594.00		Closing Balance	
1155594.00		1155594.00	1155594.00		1155594.00

P-83A: DST project on "UNDERSTANDING THE MECHANISM OF AZADIRACHTIN-MEDIATED CELL SIGNALING: ROLE IN ANTI-INFLAMMATION AND ANTI-TUMORIG P.I. Dr SUNIL KUMAR MANNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	86075.00	Opening Balance	126140.00
0.00			40065.00	Salaries- Manpower	0.00
0.00			0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00	Excess of expenditure over income	0.00	126140.00		126140.00
126140.00		126140.00	0.00	Closing Balance	0.00
126140.00		126140.00	126140.00		126140.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-84: Norway project on "PREPARING FOR TUBERCULOSIS VACCINE EFFICACY TRIALS: BASELINE EPIDEMIOLOGY, IMPROVED DIAGNOSIS, MARKERS OF PROTECTION AND PHASE I/I TRIALS" P.I. Dr NIYAZ AHMED RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			1150.00	Opening Balance	1150.00
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
0.00	Grant in aid (Transfer from P-42)	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		0.00	1150.00		1150.00
1150.00	Excess of expenditure over income	1150.00	0.00	Closing Balance	0.00
1150.00		1150.00	1150.00		1150.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-84A: DBT project on "HUMAN EPIGENETIC TO THE RESCUE OF HUMAN IDENTIFICATION PROCESS: ENTRICHING HUMAN DNA FROM DNA MIXTURE EMPLOYING ANTIBODIES DIRECTED AGAINST 5-METHYLCYTOSINE FOLLOWED BY WHOLE GENOME AMPLIFICATION" P.I. Dr MADHUSUDAN REDDY RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
655960.00	Opening Balance	676641.00	185640.00	Salaries- Manpower	248166.00
714000.00	Grant in aid	0.00	300000.00	Consumables	300000.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			90433.00	Overheads	60667.00
			117246.00	Equipment	174287.00
1369960.00		676641.00	693319.00		783120.00
0.00	Excess of expenditure over income	106479.00	676641.00	Closing Balance	
1369960.00		783120.00	1369960.00		783120.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-86: DBT project on "EVALUATION OF MYCOBACTERIUM WAS AN IMMUNOTHERAPEUTIC AGAINST PARATUBERCULOSIS (JOHN'S DISEASE OF CATTLE)" P.I. Dr NIYAZ AHMED RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{aligned} & \hline \text { Previous Year } \\ & \text { Amount } \quad \text { Rs } \end{aligned}$	Receipts	$\begin{gathered} \hline \text { Current Year } \\ \text { Amount } \quad \text { Rs. } \end{gathered}$	Previous Year. Amount Rs	Payments	$\begin{aligned} & \text { Current Year } \\ & \text { Amount } \quad \text { Rs } \end{aligned}$
78291.00	Opening Balance	0.00	18580.00	Salaries - Manpower	0.00
0.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
		0.00		Overheads	0.00
			0.00	Equipment	0.00
			59711.00	Project funds refund	0.00
78291.00		0.00	78291.00		0.00
0.00	Excess of expenditure over income	0.00	0.00	Closing Balance	0.00
78291.00		0.00	78291.00		0.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-88: DBT Project on "FINANCIAL ASSISTANCE FOR AWARD OF TATA INNOVATION FELLOWSHIP" P.I. Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	$\begin{array}{cc} \text { Current Year } \\ \text { Amount } & \text { Rs. } \end{array}$	Previous Year. Amount Rs	Payments	$\begin{aligned} & \text { Current Year } \\ & \text { Amount } \end{aligned}$
282465.00	Opening Balance	740000.00	240000.00	Salaries- Manpower	240000.00
1480000.00	Grant in aid	0.00	640318.00	Consumables	0.00
			0.00	Contingencies	0.00
			142147.00	Travel	500000.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
1762465.00		740000.00	1022465.00		740000.00
0.00	Excess of expenditure over income	0.00	740000.00	Closing Balance	0.00
1762465.00		740000.00	1762465.00		740000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-89: DBT Project on "CHARACTERIZATION OF MYCOBACTERIUM TUBERCULOSIS TRANSCRIPTION MACHINERY AND BACTERIOPHAGE METAGENOMICS" P.I. Dr RANJAN SEN RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{array}{cc} \text { Previous } \text { Year } \\ \text { Amount } & \text { Rs. } \end{array}$	Receipts	$\begin{array}{cc} \hline \text { Current } & \text { Year } \\ \text { Amount } & \text { Rs. } \end{array}$	Previous Year. Amount Rs	Payments	$\begin{array}{cc} \hline \text { Current Year } \\ \text { Amount } & \text { Rs } \end{array}$
			300000.00	Opening Balance	300000.00
0.00	Opening Balance	0.00	62240.00	Salaries - Manpower	0.00
300000.00	Grant in aid	300000.00	234330.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			3430.00	Equipment	0.00
300000.00		300000.00	600000.00		300000.00
300000.00	Excess of expenditure over income	0.00	0.00	Closing Balance	0.00
600000.00		300000.00	600000.00		300000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-90: DBT Project on "ROLE OF YAPSINS IN THE PATHOBIOLOGY OF CANDIDA GLABRATA" P.I. Dr RUPINDER KAUR RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
		0.00	0.00	Opening Balance	451999.00
373213.00	Opening Balance	0.00	217783.00	Salaries- Manpower	141408.00
0.00	Grant in aid	618700.00	500000.00	Consumables	300000.00
			20000.00	Contingencies	20000.00
			35904.00	Travel	19425.00
			0.00	Overheads	0.00
			51525.00	Equipment	322154.00
373213.00		618700.00	825212.00		1254986.00
451999.00	Excess of expenditure over income	636286.00		Closing Balance	
825212.00		1254986.00	825212.00		1254986.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-91: DBT Project on "DNMT3L: EPIGENETIC CORRELATION WITH CANCER" P.I. Dr SANJEEV KHOSLA \& Dr GAYATRI RAMAKRISHNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			0.00	Opening Balance	787064.00
174154.00	Opening Balance	0.00	187839.00	Salaries- Manpower	83700.00
0.00	Grant in aid	0.00	700000.00	Consumables	200000.00
			30000.00	Contingencies	20000.00
			35751.00	Travel	8136.00
			0.00	Overheads	0.00
			7628.00	Equipment	0.00
$\begin{aligned} & 174154.00 \\ & 787064.00 \end{aligned}$	Excess of expenditure over income	$\begin{array}{r} 0.00 \\ 1098900.00 \end{array}$	961218.00	Closing Balance	1098900.00
961218.00		1098900.00	961218.00		1098900.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD					
P-92 : DST project on "SWARNAJAYANTI FELLOWSHIP: DESIGNING TRANSCRIPTION ANTI-TERMINATORS: A NOVEL APPRACH FOR MAKING NEW INHIBITORS OF GENE EXPR P.I. Dr RANJAN SEN RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
	Opening Balance Grant in aid	$\begin{array}{r} 0.00 \\ 3500000.00 \end{array}$	73314.00	Opening Balance	1238545.00
0.00			675382.00	Salaries- Manpower	635400.00
3132400.00			1800000.00	Consumables	2300000.00
			20000.00	Contingencies	50000.00
			99283.00	Travel	44674.00
			80000.00	Overheads	120000.00
			1622966.00	Equipment	371842.00
3132400.00	Excess of expenditure over income	3500000.00	4370945.00		4760461.00
1238545.00		1260461.00	0.00	Closing Balance	0.00
4370945.00		4760461.00	4370945.00		4760461.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-95: DST Project on "CONSTRUCTION OF REGULATORY NETWORKS IN PROKARYOTES THROUGH PROTEIN: PROTEIN INTERACTION PREDICTIONS AND TRANSCRIPTION REGULATION PREDICTIONS." P.I. Dr SHEKAR C MANDE RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
			121469.00	Opening balance	0.00
0.00	Opening Balance	424041.00	154490.00	Salaries- Manpower	0.00
700000.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
				Equipment	0.00
			0.00	Project funds refund	424041.00
700000.00		424041.00	275959.00		424041.00
0.00	Excess of expenditure over income	0.00	424041.00	Closing Balance	0.00
700000.00		424041.00	700000.00		424041.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-97 : DBT Project on "PROTEOME-WIDE ANALYSIS OF SERINE PYROPHOSPHORYLATION BY INOSITOL PYROPHOSPHATES" P.I. Dr RASHNA BHANDARI RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	$\begin{aligned} & \text { Current Year } \\ & \text { Amount } \end{aligned}$
582700.00	Opening Balance	488524.00	192232.00	Salaries- Manpower	198439.00
835000.00	Grant in aid	532000.00	600000.00	Consumables	575300.00
			0.00	Contingencies	0.00
			0.00	Travel	24700.00
			121197.00	Overheads	0.00
			15747.00	Equipment	320549.00
1417700.00	Excess of expenditure over income	1020524.00	929176.00		1118988.00
0.00		98464.00	488524.00	Closing Balance	0.00
1417700.00		1118988.00	1417700.00		1118988.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-100: DBT Project on "EFFECT OF REACTIVE OXYGEN SPECIES ON T-CELL IMMUNE RESPONSE: AN APPROACH TO UNDERSTAND THE MOLECULAR MECHANIS IMMUNOSUPPRESSION DURING TUBERCULOSIS" - NATIONAL BIOSCIENCE AWARD P.I. Dr SANGITA MUKHOPADHAYAY RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year	Previous Year. Amount Rs	Payments	Current Year Amount Rs
	Opening Balance Grant in aid	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	0.00	Opening Balance	300000.00
0.00			203350.00	Salaries- Manpower	30000.00
0.00			96650.00	Consumables	0.00
			0.00	Contingencies	5000.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00	Excess of expenditure over income	0.00	300000.00		335000.00
300000.00		335000.00	0.00	Closing Balance	0.00
300000.00		335000.00	300000.00		335000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-101 : WT-DBT Alliance Project on "ROLE OF INOSITOL PYROPHOSPHATES IN CELL PHYSIOLOGY: INVESTIGATING THE BIOCHEMICAL SIGNIFICANCE OF PRO PYROPHOSPHORYLATION-SENIOR FELLOWSHIP" P.I. Dr RASHNA BHANDARI RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
15288801.00	Opening Balance Grant in aid	$\begin{array}{r} 15688931.00 \\ 4470916.00 \end{array}$	1878334.00	Salaries- Manpower Consumables Contingencies Travel Overheads Equipment	1787120.00
6784587.00			1800000.00		1100000.00
			0.00		0.00
			159823.00		73814.00
			580405.00		584586.00
			1965895.00		2884926.00
22073388.00		20159847.00	6384457.00		6430446.00
			15688931.00	Closing Balance	13729401.00
22073388.00		20159847.00	22073388.00		20159847.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-103: DBT Project on "NATIONAL BIOSCIENCE AWARD - REGULATION OF MAST CELL SIGNALING, APOPTOSIS AND SURFACE RECEPTORS" P.I. Dr SUNIL KUMAR MANNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	0.00	Salaries - Manpower	0.00
300000.00	Grant in aid	0.00	0.00	Consumables	300000.00
			300000.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
300000.00		300000.00	0.00		300000.00
0.00	Excess of expenditure over income	0.00	300000.00	Closing Balance	0.00
300000.00		300000.00	300000.00		300000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-104: DBT Project on "VIRTUAL CENTRE OF EXCELLENCE ON EPIGENETICS - PROJECT 4: EPIGENETIC DYNAMICS IN CELL TYPES AND ITS POTENTIAL ASSOCIATION ENVIRONMENT AND DISEASE" P.I. Dr SANJEEV KHOSLA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.001437000.00	Opening Balance Grant in aid	297613.00	398371.00	Salaries- Manpower	484709.00
		0.00	700000.00	Consumables	1100000.00
			30000.00	Contingencies	70000.00
			11016.00	Travel	37770.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
1437000.00		297613.00	1139387.00		1692479.00
	Excess of expenditure over income	1394866.00	297613.00	Closing Balance	
1437000.00		1692479.00	1437000.00		1692479.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-105 : DBT Project on "CLONING, CHARACTERISATION AND ANALYSIS OF CHROMOSOMAL REARRANGEMENTS IN HUMAN GENETIC DISORDERS" P.I. Dr ASHWIN DALAL RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	145971.00	157040.00	Salaries- Manpower	187200.00
827000.00		681000.00	500000.00	Consumables	700000.00
			20000.00	Contingencies	20000.00
			3989.00	Travel	10615.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
827000.00		826971.00	681029.00		917815.00
	Excess of expenditure over income	90844.00	145971.00	Closing Balance	0.00
827000.00		917815.00	827000.00		917815.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-107: DBT IYBA Project on "MECHANISM AND ROLE OF BACTERIAL CELL-CELL SIGNALING MOLECULES IN PLANT DEFENSE RESPONSE" P.I. Dr SUBHADEEP CHATTERJEE RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	602006.00	109200.00	Salaries- Manpower	187200.00
2027000.00		773000.00	600000.00	Consumables	600000.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			185869.00	Overheads	54131.00
			529925.00	Equipment	470075.00
2027000.00		1375006.00	1424994.00		1311406.00
			602006.00	Closing Balance	63600.00
2027000.00		1375006.00	2027000.00		1375006.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-109: DBT IYBA Project on "MOLECULAR DISSECTION OF PI3-KINASE/AKT PATHWAY BY SUING PROTEOMICS BASED APPROACH: A STUDY TO IDENTIFY NOVEL POTENTIAL ONCOGENES AND TUMOR SUPPRESSORS" P.I. Dr M SUBBA REDDY RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	1476104.00	79040.00	Salaries- Manpower	187200.00
2027000.00		742000.00	400000.00	Consumables	800000.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			71856.00	Overheads	0.00
			0.00	Equipment	915278.00
2027000.00		2218104.00	550896.00		1902478.00
			1476104.00	Closing Balance	315626.00
2027000.00		2218104.00	2027000.00		2218104.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-110: DST Project on "INDIA-JAPAN RESEARCH PROJECT TITLE"IDENTIFICATION AND ANALYSIS OF SEX DETERMINING GENES IN SILKMOTHS" P.I. Dr J NAGARAJU RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount
0.00	Opening Balance	24389.00	0.00	Salaries- Manpower	0.00
170000.00	Grant in aid	0.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			145611.00	Travel	193068.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
170000.00		24389.00	145611.00		193068.00
			24389.00	Closing Balance	
	Excess of expenditure over income	168679.00			
170000.00		193068.00	170000.00		193068.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-111: DBT Ramalingaswami Fellowship "REFRACTORINESS MECHANISM IN MOSQUITO: CRACKING MOLECULAR CODES AT GENOMIC SCALE" P.I. Dr SHEWTA TYAGI RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	$\begin{array}{r} 488631.00 \\ 1511500.00 \end{array}$	610028.00	Salaries- Manpower	1168400.00
1400000.00			300000.00	Consumables	400000.00
			0.00	Contingencies	0.00
			1341.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
1400000.00		2000131.00	911369.00		1568400.00
			488631.00	Closing Balance	431731.00
1400000.00		2000131.00	1400000.00		2000131.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-113: ICMR Project on "CLINICAL AND MOLECULAR GENETIC ANALYSIS OF SQUAMOUS CELL CARCINOMA OF THE TONGUE" P.I. Dr M D BASHYAM RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year
$\begin{array}{r} 0.00 \\ 1139487.00 \end{array}$	Opening Balance Grant in aid	$\begin{aligned} & 550715.00 \\ & 848689.00 \end{aligned}$	$\begin{array}{r} 110542.00 \\ 200000.00 \\ 0.00 \\ 0.00 \\ 9316.00 \\ 268914.00 \end{array}$	Salaries- Manpower Consumables Contingencies Travel Overheads Equipment	$\begin{array}{r} 519587.00 \\ 320000.00 \\ 0.00 \\ 0.00 \\ 25187.00 \\ 0.00 \end{array}$
1139487.00		1399404.00	$\begin{array}{r} 588772.00 \\ 550715.00 \\ \hline \end{array}$	Closing Balance	$\begin{array}{r} 864774.00 \\ 534630.00 \\ \hline \end{array}$
1139487.00		1399404.00	1139487.00		1399404.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-114: DBT Project on "EVALUATING THE CALCINEURIN-NFAT PATHWAY AND ITS REGULATORS SUPEROXIDE DISMUTASE (SOD) AND RCAN1 (REGULAR OF CALCINEURIN) DOWN SYNDROME" P.I. Dr GAYATRI RAMAKRISHNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	$\begin{array}{r} 1532761.00 \\ 0.00 \end{array}$	37239.00	Salaries- Manpower	187200.00
2070000.00			500000.00	Consumables	1000000.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment Closing Balance	294008.00
2070000.00		1532761.00	537239.00		1481208.00
			1532761.00		51553.00
2070000.00		1532761.00	2070000.00		1532761.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-115: Setting up the National Institute of Animal Biotechnology at Hyderabad RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid		291680.00	Salaries- Manpower Consumables Contingencies Travel Equipment Project funds transferred	3276411.00
5000000.00		65500000.00	0.00		6778000.00
			0.00		4083820.00
			0.00		1301119.00
			149015.00		4580214.00
			0.00		42000000.00
5000000.00		70059305.00	440695.00	Closing Balance	62019564.00
			4559305.00		8039741.00
5000000.00		70059305.00	5000000.00		70059305.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-116: DBT-India and AIST - Japan : UNDERSTANDING MOLECULAR MECHANISMS CONTROLLING DUAL ROLE OF RAS, SIRTUINS AND CARF IN RELATION TO CELLULARPROLIFERATION AND SENESCENCE: NOVELSTRATEGY FOR DEVELOPING CANCER THERAPEUTICS P.I. Dr GAYATRI RAMAKRISHNA RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	1692817.00	32709.00	Salaries- Manpower	71961.00
2037200.00		0.00	300000.00	Consumables	1000000.00
			0.00	Contingencies	100000.00
			11674.00	Travel	9276.00
			0.00	Overheads	0.00
			0.00	Equipment	800000.00
2037200.00	Excess of expenditure over income	1692817.00	344383.00		1981237.00
		288420.00	1692817.00	Closing Balance	
2037200.00		1981237.00	2037200.00		1981237.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-117: DBT Project on "JOINT NEW INDIGO ERA-NET PROJECT TITLED "MYCOBACTERIUM TUBERCULOSIS : BIOINFORMATIC AND STRUCTURAL STRATEGIES TOWARDS TREATMENT" P.I. Dr SHEKHAR C MANDE RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year
0.00	Opening Balance Grant in aid	5251500.00	0.00	Salaries- Manpower	138667.00
5593000.00		0.00	200000.00	Consumables	300000.00
			25000.00	Contingencies	25000.00
			66500.00	Travel	140754.00
			50000.00	Overheads	50000.00
				Equipment	0.00
			0.00	Project funds transferred	4597079.00
5593000.00		5251500.00	341500.00		5251500.00
			5251500.00	Closing Balance	0.00
5593000.00		5251500.00	5593000.00		5251500.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-118: DST Project on "CONSTRUCTION OF REGULATORY NETWORKS IN MYCOBACTERIUM TUBERCULOSIS THROUGH ANALYSIS OF GENE EXPRESSION DA TRANSCRIPTION REGULATION PREDICTIONS. (MOU WITH RUSSIAN FOUNDATION)" P.I. Dr SHEKHAR C MANDE RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	1115770.00	0.00	Salaries- Manpower	227877.00
1400770.00		0.00	200000.00	Consumables	300000.00
			15000.00	Contingencies	10000.00
			20000.00	Travel	98968.00
			50000.00	Overheads	35280.00
				Equipment	183443.00
			0.00	Project funds transferred	260202.00
1400770.00		1115770.00	285000.00		1115770.00
			1115770.00	Closing Balance	0.00
1400770.00		1115770.00	1400770.00		1115770.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-119: DBT Project on "ANALYSIS OF DNA COPY NUMBER ALTERATIONS IN ESOPHAEAL CANCER" P.I. Dr M D BASHYAM RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00800000.00	Opening Balance Grant in aid	560342.00	24658.00	Salaries- Manpower	247000.00
		0.00	200000.00	Consumables	1000000.00
			15000.00	Contingencies	35000.00
			0.00	Travel	16947.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
800000.00 Excess of expenditure over income		560342.00	239658.00		1298947.00
		738605.00	560342.00	Closing Balance	
800000.00		1298947.00	800000.00		1298947.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-121: DBT Project on "IDENTIFICATION AND CHARACTERIZATION OF PTEN REGULATORS" P.I. Dr M SUBBA REDDY RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	37096.00	120774.00	Salaries- Manpower	187200.00
345776.00	Grant in aid	0.00	158350.00	Consumables	400000.00
			23600.00	Contingencies	25000.00
			5956.00	Travel	12082.00
			0.00	Overheads	10000.00
			0.00	Equipment	0.00
345776.00		37096.00	308680.00		634282.00
	Excess of expenditure over income	597186.00	37096.00	Closing Balance	
345776.00		634282.00	345776.00		634282.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-123: Establishment and Implementation of the Indo-German DST-MPG (Max Planck Society) Partner Group on Genetic Diversity Studies P.I. Dr N Madhusudan Reddy RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount
0.00	Opening Balance Grant in aid	$\begin{array}{r} 0.00 \\ 2884810.00 \end{array}$	0.00	Salaries- Manpower	185648.00
0.00			0.00	Consumables	473306.00
			0.00	Contingencies	50000.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	101800.00
0.00		2884810.00	0.00		810754.00
			0.00	Closing Balance	2074056.00
0.00		2884810.00	0.00		2884810.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-124: DBT Project on "PREPARATION AND CHARACTERIZATION OF PEROXOMETAL COMPOUNDS AND STUDIES AND THEIR BIOLOGICAL SIGNIFICANCE IN CELLULAR SIGNa P.I. Dr Gayatri Ramakrishna RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	0.00	0.00	Salaries- Manpower	111716.00
0.00		819000.00	0.00	Consumables	500000.00
			0.00	Contingencies	40000.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		819000.00	0.00		651716.00
			0.00	Closing Balance	167284.00
0.00		819000.00	0.00		819000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-125: CSIR Project on "MECHANISTIC STUDIES ON THE ROLE OF PROTEIN KINASE SNFILK IN CELL CYCLE AND CANCER" P.I. Dr M Subba Reddy RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	0.00	0.00	Salaries- Manpower	110000.00
0.00		764000.00	0.00	Consumables	500000.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		764000.00	0.00		610000.00
			0.00	Closing Balance	154000.00
0.00		764000.00	0.00		764000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-127: WT - DBT Alliance Project on "SYSTEMATIC STUDIES ON THE FUNCTIONAL NETWORK OF PHOSPHATASES IN CELL LIFE AND DEATH" P.I. Dr M Subba Reddy RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount
0.00	Opening Balance Grant in aid	$\begin{array}{r} 0.00 \\ 11097596.00 \end{array}$	0.00	Salaries- Manpower	269440.00
0.00			0.00	Consumables	3000000.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	549534.00
			0.00	Equipment	2225907.00
0.00		11097596.00	0.00		6044881.00
			0.00	Closing Balance	5052715.00
0.00		11097596.00	0.00		11097596.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-129: DBT Project on "DISCOVERY OF BIOACTIVE NATURAL PRODUCTS FROM MICROBES ESPECIALLY ACTINOMYCETES IN NICHE BIOTOPES IN MANIPUR P.I. Dr Shekhar C Mande RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
$\begin{array}{cc} \hline \text { Previous } & \text { Year } \\ \text { Amount } & \text { Rs } \end{array}$	Receipts	$\begin{array}{cc} \hline \text { Current Year } \\ \text { Amount } & \text { Rs. } \end{array}$	Previous Year. Amount Rs	Payments	$\begin{array}{cc} \hline \text { Current Year } \\ \text { Amount } \end{array}$
0.00	Opening Balance	0.00	0.00	Salaries- Manpower	0.00
0.00	Grant in aid	306000.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		306000.00	0.00		0.00
			0.00	Closing Balance	306000.00
0.00		306000.00	0.00		306000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-131: DBT Project on "STRUCTURAL AND FUNCTIONAL STUDIES OF ACYL COA BINDING PROTEINS FROM PLASMODIUM FALCIPARUM" P.I. Dr Akash Ranjan RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount
0.00	Opening Balance Grant in aid		0.00	Salaries- Manpower	41265.00
0.00		1899200.00	0.00	Consumables	650000.00
			0.00	Contingencies	25000.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		1899200.00	0.00		716265.00
			0.00	Closing Balance	1182935.00
0.00		1899200.00	0.00		1899200.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-133: DBT Project on "INVESTIGATING THE ROLE OF HOX GENE DEFORMED IN CENTRAL NERVOUS SYSTEM PATTERNING IN DROSOPHILA MELANOGASTER" P.I. Dr Rohit Joshi RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid		0.00	Salaries- Manpower	0.00
0.00		1849000.00	0.00	Consumables	300000.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		1849000.00	0.00		300000.00
			0.00	Closing Balance	1549000.00
0.00		1849000.00	0.00		1849000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-134: DBT project on "EXPLORATION OF WILD SILK MOTH BIODIVERSITY IN MANIPUR AND THEIR GENETIC CHARACTERIZATION USING MOLECULAR MARK P.I. Dr K P Arun Kumar RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount
0.00	Opening Balance Grant in aid	0.00	0.00	Salaries- Manpower	0.00
0.00		400000.00	0.00	Consumables	131000.00
			0.00	Contingencies	15000.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		400000.00	0.00		146000.00
			0.00	Closing Balance	254000.00
0.00		400000.00	0.00		400000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-135: DBT Project on "SYS TB: A NETWORK PROGRAM FOR RESOLVING THE INTRACELLULAR DYNAMICS OF HOST PATHOGEN INTERACTION IN TB INFEC P.I. Dr Sanjeev Khosla RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	0.00	0.00	Salaries- Manpower	0.00
0.00		7943200.00	0.00	Consumables	500000.00
			0.00	Contingencies	25000.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		7943200.00	0.00		525000.00
			0.00	Closing Balance	7418200.00
0.00		7943200.00	0.00		7943200.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-136: DBT Project on "RAF KINASE - A KEY TARGET FOR MODERN-DAY THERAPY AGAINT TUMORS" P.I. Dr Sunil Kumar Manna RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03 .2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	$\begin{array}{r} 0.00 \\ 837200.00 \end{array}$	0.00	Salaries- Manpower Consumables Contingencies Travel Overheads Equipment	0.00
0.00			0.00		0.00
			0.00		0.00
			0.00		0.00
			0.00		0.00
			0.00		0.00
0.00		837200.00	0.00		0.00
			0.00	Closing Balance	837200.00
0.00		837200.00	0.00		837200.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-137: SERB Project on "SIGNALING PATHWAYS INVOLVED IN DOWN REGULATION OF PROINFLAMMATORY RESPONSES BY PPE18 PROTEIN OF MYCOBACTERIUM TUBE IMPLICATION OF PPE18 AS THERAPEUTICS" P.I. Dr Sangita Mukhopadhayay RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	0.00	0.00	Salaries- Manpower	0.00
0.00		1500000.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		1500000.00	0.00		0.00
			0.00	Closing Balance	1500000.00
0.00		1500000.00	0.00		1500000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-144: University of Pittsburgh Project on "TRI-NATIONAL TRAINING PROGRAM FOR PSYCHIATRIC GENETICS" P.I. Dr Ashwin B Dalal RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance Grant in aid	0.00	0.00	Salaries- Manpower	0.00
0.00		267184.00	0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
0.00		267184.00	0.00		0.00
			0.00	Closing Balance	267184.00
0.00		267184.00	0.00		267184.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD COE on Genetics and Genomic of Silkworms P.I. Dr J Nagaraju RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
$\begin{aligned} & 10330961.00 \\ & 13680000.00 \end{aligned}$	Opening Balance Grant in aid	$\begin{array}{r} 0.00 \\ 22433000.00 \end{array}$	0.00 6002999.00 500000.00 560000.00 862106.00 2900000.00 12000000.00 144242.00 0.00 9740478.00	Opening Balance Salaries- Manpower Consumables Contingencies Travel Workshop / Training Equipment Maintenance Books \& Journals Overheads Equipment	13198864.00 8389307.00 3700000.00 100000.00 155348.00 0.00 0.00 0.00 0.00 0.00
$\begin{aligned} & 24010961.00 \\ & 13198864.00 \end{aligned}$	Excess of expenditure over income	$\begin{array}{r} 22433000.00 \\ 3110519.00 \\ \hline \end{array}$	$\begin{array}{r} 37209825.00 \\ 0.00 \\ \hline \end{array}$	Closing Balance	25543519.00
37209825.00		25543519.00	37209825.00		25543519.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD COE - II : DBT Project on "Centre of Excellence for Microbial Biology" P.I: Dr J Gowrishankar, Dr K Anupama, Dr Abhijit A Sardesai, Dr Ranjan Sen and Dr Shekar C Mande RECEIPTS AND PAYMENTS ACCOUNT FROM 01.04.2011 TO 31.03.2012					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount \quad Rs
			1454733.00	Opening Balance	4591687.00
0.00	Opening Balance	0.00	6699151.00	Salaries- Manpower	7807713.00
8913000.00	Grant in aid	8570000.00	3000000.00	Consumables	4400000.00
			520000.00	Contingencies	520000.00
			365439.00	Travel	220300.00
			0.00	Overheads	0.00
			1465364.00	Equipment	0.00
8913000.00		8570000.00	13504687.00		17539700.00
4591687.00	Excess of expenditure over income	8969700.00	0.00	Closing Balance	0.00
13504687.00		17539700.00	13504687.00		17539700.00

फोटो गैलरी
Photo Gallery

सी डी एफ डी और भारतीय सर्वेक्षण विभाग के बीच 19 जून 2011 हुए भुमी एवं भवन हस्तांतरण समारोह का चित्र
Land and building handover ceremony between the Survey of India (Sol, DST) and CDFD on 19 June, 2011

21 जून 2011 को सी डी एफ डी प्रयोगशाला ब्लॉक में अग्नि शमन की कवायद करते हुए कर्मचारीगण Fire Drill in CDFD Laboratory Block on 21 June, 2012

सी डी एफ डी परिसर में स्वतंत्रता दिवस के उपलक्ष पर झण्डा रोहण करते हुए
Flag Hoisting on the occasion of Independence day

23 अगस्त, 2011 को आण्विक अनुवांशिकी प्रयोगशाला में नैशनल इंस्टिट्यूट ऑफ एग्रोबायोलॉजिकल साइन्सिस जापान के प्रो. काजूई मीता एवं तोशिकी तामुरा
Visit of Prof. Kazuei Mita and Prof. Toshiki Tamura from the National Institute of Agrobiological Sciences, Japan in the Laboratory of Molecular Genetics on 23 August, 2011

14 सितंबर, 2011 को हिन्दी सप्ताह के पुरस्कार वितरण समारोह
Hindi week celebration and award distribution ceremony on 14 September, 2011

1 नवंबर, 2011 को एकाडेमिया सीनिका, ताईवान के प्रतिनिधि सी डी एफ डी के संकाय सदस्यों से परस्पर विचार विमर्ष करते हुए
Delegates from the Academia Sinica, Taiwan interacting with the faculty members on 1 November, 2011

24 जनवरी, 2012 को हैदराबाद विश्वविद्यालय के सहयोग से आयोजित डॉ. ए.सलाम स्मारक आई आर टी जी विन्टर स्कुल सैटेलाईट व्याख्यान में उपस्थित अतिथिगण
A section of the audience during IRTG Winter School Satellite Lecture in memoriam Dr. A Salam Khan, jointly organized with the University of Hyderabad, on January 24, 2012

बेंगालुरू में 6-8 फरवरी, 2012 को आयोजित इण्डिया बायो-2012 द्वारा पोस्टर प्रस्तुति प्रतियोगिता में सी डी एफ डी-आईकेपी अध्येता श्री विजय गुणसेखरन द्वितिय पुरस्कार ग्रहण करते हुए Mr. Vijay Gunasekaran, CDFD-IKP Fellow being conferred with second prize for poster presentation at Bangalore INDIA BIO-2012 held during 6-8 February, 2012

2 फरवरी, 2012 को श्रोतागण को संबोधित करते हुए प्रो. मार्टीन किल्लीयास Prof. Martin Killias addressing the audience on 2 February, 2012

6 फरवरी, 2012 को प्रो. जून्जिी चेन का स्वागत करते हुए सी डी एफ डी के निदेशक डॉ. ज. गौरीशंकर Dr. J Gowrishankar welcoming Prof. Junjie Chen by 6 February, 2012

प्रो. तोरू शिमाडा द्वारा दिए गए भाषण के उपरांत, सी डी एफ डी के निदेशक डॉ. ज. गौरीशंकर और डॉ. जे. नागाराजू के साथ वार्तालाप करते हुए कुछ जापानी अतिथिगण
Interaction of Japanese guests with Dr. J. Gowrishankar and Dr. J. Nagaraju after the lecture by Prof. Toru Shimada on 24 February 2012

11-14 मार्च 2012 रामलिंगास्वामी फेलोज़ कॉनक्लेव के कुछ सहभागी
Participants of the Ramalingaswami Fellow's Conclave organized from 11-14 March 2012

सी डी एफ डी स्थापना दिवस समारोह के कुछ दुष्य A glimpse of the CDFD Foundation Day celebrations

NOTES / REMARKS

