सी डी एफ डी CDFD

वार्षिक प्रतिवेदन
 अफ्र्रैल 2014 से मार्च 2015 तक
 ANNUAL REPORT

April 2014 to March 2015

डी एन ए फिंगरप्रिंटिंग एवं निदान केन्द्र
नामपल्ली, हैदराबाद- 500001
Centre for DNA Fingerprinting and Diagnostics
Nampally, Hyderabad - 500001

CONTENTS

I Mandate 5
II From the Director's Desk 11
III Services

1. Laboratory of DNA Fingerprinting Services 21
2. Diagnostics Division 25
3. APEDA-CDFD Centre for Basmathi DNA Analysis 34
IV Research
4. Laboratory of Bacterial Genetics 39
5. Laboratory of Cell Cycle Regulation 46
6. Laboratory of Cell Death \& Cell Survival 50
7. Laboratory of Cell Signalling 54
8. Laboratory of Chromatin Biology and Epigenetics 60
9. Laboratory of Computational Biology 64
10. Laboratory of Computational \& Functional Genomics 70
11. Laboratory of Drosophila Neural Development 76
12. Laboratory of Fungal Pathogenesis 80
13. Laboratory of Genomics and Profiling Applications 86
14. Laboratory of Immunology 90
15. Laboratory of Mammalian Genetics 94
16. Laboratory of Molecular Cell Biology 97
17. Laboratory of Molecular Genetics 102
18. Laboratory of Molecular Oncology 110
19. Laboratory of Neurospora Genetics 115
20. Laboratory of Plant-Microbe Interactions 119
21. Laboratory of Transcription 123
22. Other Scientific Services / Facilities
a. Laboratory Animal Facility 129
b. Bioinformatics 132
C. Instrumentation 133
V Publications 135
VI Human Resource Development 145
VII Awards and Honours 149
VIII Lectures, Meetings, Workshops and Important Events 153
IX Deputations Abroad of CDFD Personnel 159
X Faculty and Officers of CDFD 165
XI Committees of the Centre 169
XII Implementation of RTI Act, 2005 181
XIII Budget and Finance 185
XIV Photo Gallery 319

अघिदेश

सीडीएफडी सोसाइटी के संगम ज्ञापन तथा नियम एवं विनियमों में बताए गए अनुसार डीएनए फिंगरप्रिंटिंग एवं निदान केंद्र की स्थापना जिन उद्देश्यों के लिए हुई वे निम्न प्रकार हैं :
i. पितृत्व विवाद, आप्रवास और अस्पतालों में नवजात शिशुओं की अदला-बदली जैसे मामलों में निजी पक्षों सहित विविध अभिकरणों के लिए पर्याप्त अदायगी पर डीएनए प्रोफाइलिंग और उससे संबंधित विश्लेषण का वैज्ञानिक अनुसंधान करना।
ii. अपराध अन्वेषण अभिकरणों को डीएनए फिंगरप्रिंटिंग और उससे संबंधित विश्लेषण तथा सुविधाएं प्रदान करना।
iii. अपराध अन्वेषण और परिवार मामलों में डीएनए प्रोफाइल विश्लेषण और उससे संबंधित तकनीकों के साक्ष्य संबंधी मूल्य को समझने में पुलिस कर्मियों, न्यायिक वैज्ञानिकों, वकीलों तथा न्यायपालिका की सहायता करना।
iv. आनुवंशिक अव्यवस्थाओं को संसूचित करने हेतु डीएनए नैदानिक विधियां सिद्ध करना और इस प्रकार के संसूचन के लिए संपरीक्षाएं विकसित करना।
v. पादप और जंतु कोशिका माल, कोशिका लाइनों के प्रमाणीकरण के लिए डीएनए फिंगरप्रिंटिंग तकनीकों का उपयोग करना और ऐसे प्रयोजनों के लिए आवश्यकतानुसार नई संपरीक्षाएं विकसित करना।
vi. डीएनए फिंगरप्रिंटिंग तकनीकों पर प्रशिक्षण प्रदान करना।
vii. मूलभूत, अनुप्रयुक्त अनुसंधान एवं विकास कार्य करना।
viii. देश में चिकित्सा संस्थाओं, जन-स्वास्थ्य अभिकरणों और उद्योग को परामर्शी सेवाएं प्रदान करना।
ix. केंद्र के उद्देश्यों से संगत क्षेत्रों में विदेशी अनुसंधान संस्थाओं एवं प्रयोगशालाओं और अन्य अंतरराष्ट्रीय संगठनों के साथ सहयोग करना।
x. अनुसंधान छात्रों को स्नातकोत्तर उपाधियों के लिए पंजीकृत कर सकने के प्रयोजन हेतु उत्चतर अधिगम के मान्यता प्राप्त विश्वविद्यालयों एवं संस्थाओं के साथ संबंध स्थापित करना।
xi. भारत सरकार, राज्य सरकारों, देश में स्थित पूर्व संस्थाओं / न्यासों, व्यक्तियों और अन्य गतिविधियों के लिए अंतरराष्ट्रीय संगठनों सहित विदेशी स्रोतों से आर्थिक सहायता प्राप्त करना।
xii. केंद्र सरकार के पूर्व अनुमोदन से प्रशिक्षण कार्यक्रमों, वैज्ञानिक अनुसंधान और अन्य गतिविधियों के लिए अंतरराष्ट्रीय संगठनों सहित विदेशी स्रोतों से आर्थिक सहायता प्राप्त करना।
xiii. केंद्र की गतिविधियों को चलाने के लिए जैसा आवश्यक या सुविधाजनक हो, कोई भी संपत्ति चल या अचल या भवनों एवं निर्माणों को निर्मित करने, सुधार करने, परिवर्तित करने, गिरा देने या मरम्मत करने हेतु उपहार, क्रय, विनियम, पट्टा, भाडे पर लेने द्वारा या अन्यथा किसी भी तरह अर्जित करना।
xiv. केंद्र के प्रयोजन हेतु, भारत सरकार और अन्य प्रोनोटों, विनियम पत्रों या अन्य परक्राम्य लिखतों को आहरित करना और स्वीकार करना, तैयार करना और पृष्ठांकित करना, बट्टा करना और परक्रामण करना।
$x v$. केंद्र को सौंपी गई निधियों या धन को निवेश करने के लिए, ऐसी प्रतिभूतियों को खोलने या ऐसे तरीके से, जो कि समय-समय पर शासी परिषद द्वारा निर्धारित किए जाते हैं, इस प्रकार के निवेश को विक्रय या पक्षांतरण करना।
xvi. उत्त सभी उद्देश्यों या उनमें से किसी उद्देश्य की प्राप्ति के लिए सभी ऐसे अन्य विधिसम्मत कार्य, जैसा आवश्यक, प्रासंगिक या सहायक हो, करना।
xvii. केंद्र के उद्देश्यों को वास्तविक बनाने के लिए प्रोफेसरों, अन्य संकाय पदों, अभ्यागत अध्येतावृत्तियों सहित अध्येतावृत्तियों, अनुसंधान एवं संवर्ग पदों, छात्रवृत्तियों आदि को संस्थापित करना।
xviii. केंद्र के वैज्ञानिक एवं प्रौद्योगिकीय कार्य के लिए प्रयोगशालाओं, कार्यशालाओं, भंडार, पुस्तकालय, कार्यालय और अन्य सुविधाओं को स्थापित करना।
xix. तकनीकी जानकारी को उद्यमकर्ताओं और उद्योगों से प्राप्त या उनको अंतरण करना, और
$x x$. पेटेंटो, डिजाइनों एवं तकनीकी जानकारी जो कि केंद्र द्वारा विकसित की गई हो, को पंजीकृत करना और केंद्र के हित में ऐसे पेटेंटों / डिजाइनों / तकनीकी जानकारी के किसी भाग को अंतरण करना।

MANDATE

The objectives for which the Centre for DNA Fingerprinting and Diagnostics (CDFD) was established, as enumerated in Memorandum of Association and Rules and Regulations of CDFD Society, are as follows:
i. To carry out scientific research pertaining to DNA profiling and related analysis in civil cases like paternity disputes, immigration, and exchange of newborns in hospitals, for various agencies including private parties, on appropriate payment;
ii. To provide DNA fingerprinting and related analysis and facilities to crime investigation agencies;
iii. To assist police personnel, forensic scientists, lawyers and the judiciary in understanding the evidential value of the DNA profile analysis and related techniques in crime investigation and family matters;
iv. To establish DNA diagnostic methods for detecting genetic disorders and to develop probes for such detection;
v. To use DNA fingerprinting techniques for the authentication of plant and animal cell material, cell lines and to develop new probes where necessary for such purposes;
vi. To provide training in DNA fingerprinting techniques;
vii. To undertake basic, applied and developmental R \& D work;
viii. To provide consultancy services to medical institutions, public health agencies and industry in the country;
ix. To collaborate with foreign research institutions and laboratories and other international organizations in fields relevant to the objectives of the Centre;
x. To establish affiliation with recognized universities and institutions of higher learning for the purpose of enabling research scholars to register for post-graduate degrees;
xi. To receive grants, donations and contributions in cash or in other forms from the Government of India, State Governments, Charitable Institutions/Trusts, individuals and industry within the country;
xii. To receive, with the prior approval of the Central Government, monetary assistance from foreign sources including international organizations for training programmes, scientific research and other activities;
xiii. To acquire by gift, purchase, exchange, lease, hire or otherwise howsoever, any property movable or immovable or to construct, improve, alter, demolish or repair buildings and structures as may be necessary or convenient for carrying on the activities of the Centre;
xiv. For the purpose of the Centre, to draw and accept, make and endorse, discount and negotiate Government of India and other Promissory Notes, Bills of Exchange, Cheques or other Negotiable Instruments;

निदेशक का संदेश
 From the Director's Desk

निदेश्रक का संदेश

मुझे डीएनए फिंगरप्रिंटिंग एवं निदान केन्द्र (सीडीएफडी), हैदराबाद की वार्षिक रिपोर्ट प्रस्तुत करते हुए अत्यंत प्रसन्नता है। संस्थान 1996 में स्थापित किया गया था और तब से इसने विविध गतिविधियों में उत्कृष्टता अर्जित की है। संस्थान डीएनए फिंगरप्रिंटिंग, मानव आनुवंशिकी विकारों के लिए नैदानिक परीक्षणों तथा शुद्धता के लिए बासमती चावल के विश्लेषण के क्षेत्रों में सेवाएं प्रदान करता है तथा यह आधुनिक जीव विज्ञान के विभिन्न विषयों में भी बुनियादी अनुसंधान गतिविधियां में संलग्र है। इस वर्ष केन्द्र की कुछ प्रमुख उपलब्धियां और अनुसंधान प्राप्तियां आगे दी गई है, जिनके विवरण अलग अलग प्रयोगशालाओं द्वारा विवरणों में संलग्र किए गए हैं, जो इस रिपोर्ट में संलग्र हैं।
2014-15 की अवधि के दौरान डीएनए फिंगरिप्रिंटिंग सेवा प्रयोगशाला में लगभग 550 मामले प्राप्त। किए गए, जिन्हें न्याय पालिका तथा राज्य और संघीय सरकारों की कानून प्रवर्तन एजेंसियों द्वारा अग्रेषित किया गया था तथा डीएनए परीक्षकों ने पूरे देश की विभिन्न कानूनी अदालतों में अपनी रिपोर्ट प्रदान की है। प्रयोगशाला में फेडरल ब्यूरो ऑफ इंवेस्टीगेशन (एफबीआई), यूएसए से कम्बाइंड डीएनए इंडेक्स सिस्टम (सीओडीआईएस) सॉफ्टवेयर खरीदा गया है, जो आपराधिक न्याय प्रदायगी और दीवानी प्रक्रियाओं के लिए डीएनए डेटा बैंक में भंडारित डीएनए प्रोफाइल के साथ मिलान में सहायता करेगा। जहां तक मानव डीएनए प्रोफाइलिंग विधेयक का संबंध है, केन्द्र जैव प्रौद्योगिकी विभाग, भारत सरकार के साथ संसद द्वारा लागू करने के लिए प्रारूप विधेयक को अंतिम रूप देने का समन्वय करता है।
नैदानिकी प्रभाग द्वारा विभिन्नि आनुवंशिकी लोगों के लिए लगभग 3700 रोगियों को आनुवंशिकी सेवाएं प्रदान की गई। चिकित्सा आनुवंशिकी में एक डीएनबी कार्यक्रम आरंभ किया गया और क्लिनिकल साइटोजेनेटिक्सन तथा क्लिनिकल आण्विक आनुवंशिकी में भी अध्येतावृत्ति कार्यक्रम चलाए गए हैं।
बासमती अपमिश्रण परीक्षण में आने वाली जटिलताओं और चुनौतियों को ध्यान में रखते हुए बासमती डीएनए

विश्लेषण के लिए एपिडा-सीडीएफडी केन्द्रो द्वारा किए गए प्रयासों को अपमिश्रण परीक्षण प्रोटोकॉल विस्तारित करने के लिए आगे बढ़ाया गया है। इस दिशा में केन्द्र ने 8 मार्कर के पैनल की विधि का विस्तार एक व्यापक डेटाबेस तैयार करने के लिए सभी अधिसूचित बासमती किस्मों की पहचान के लिए विस्तारित किया है।

कोशिका चक्र विनियमन प्रयोगशाला में एच 3 के 4 एमई 3 डीमेथिलेस के रूप में आरबीपी 2 को चुना है जो ई२एफ 4 प्रोटीन के ट्रांसएक्टिवेशन डोमेन के साथ अंत:क्रिया करता है। इस प्रयोगशाला के अनुसंधान परिणाम दर्शाते हैं कि सभी एमएलएल कॉम्प्लेक्स जो हैं एमएलएल, एमएलएल 2 , एमएलएल 3 तथा एसईटी 1 ए एस चरण के आगे बढ़ने के दौरान इसके नियमन में एक भूमिका निभाते हैं, केवल एमएलएल और एसईटी 1 ए ऐसे हैं जो एम चरण की प्रगति की सुविधा प्रदान करने के लिए जिम्मेदार हैं। आण्विक ओंकोलॉजी प्रयोगशाला में प्रथम गैर डब्ल्यूएनटी (12 जीन) को पहचाना गया है जो मनुष्य में यदा कदा होने वाले मलाशय के कैंसर की जल्दी शुरूआत का संकेत देता है।

कोशिका सिग्नलिंग प्रयोगशाला में प्रदर्शित किया गया है कि आईपी 7 ओंकोप्रोटीन सी-एमवायसी पायरोफॉस्फोराइलेट होने के जरिए तथा इसके अर्ध जीवन और यूबीक्किटिलेशन का नियमन करता है। इस प्रयोगशाला के अनुसंधान में दर्शाया गया है कि नर चूहे में आईपी6के 1 में अर्ध सूत्री

विभाजन के अवकलन के बाद हुए दोषों के कारण अनुवर्वता होने से गोल स्पर्मेटिड परिपक्र होकर लंबे स्पर्मेटिड बनाते हैं, जिससे एजूस्पर्मिया हो जाता है। क्रोमेटिन जीव विज्ञान तथा एपिजेनेटिक्स प्रयोगशाला द्वारा एसयूपी 1 खोजा गया, जो विदलन इस्ट सिरट्यूइन एचएसटी 4 का एक नया अतःक्रियात्मक कारक है जो डीएनए पॉलीमरेस अल्फा से संबद्ध रेप्लीकेशन कारक है।

अभिकलनात्मक जीव विज्ञान प्रयोगशाला में सिद्ध किया गया है कि वायरल प्रोटीन से ऐसे मोटिफ बनते हैं जो यूकेरियोटिक लिनियर मोटिफ (ईएलएम) के समान होते हैं और मानव प्रोटीन से जुड़ कर ईएलएम बंधनकारी डोमेन बनाते हैं। अभिकलनात्मक और कार्यात्मक जीनोमिकी प्रयोगशाला में मानव एचवायपीके प्रोटीन को लाक्षणीकृत किया गया है और दर्शाया गया है कि यह हंटिंगटीन जैसे समुच्चय संवेदी प्रोटीनों के साथ किस प्रकार अनुभूति और व्यवधान उत्पन्न करता है।

कैंडिडा ग्लाब्रेटा के साथ कार्य करते हुए कवक रोगाणुजनन प्रयोगशाला में एक आयरन परमिएस सीजीएफटीआर 1 नामक एक मल्टी कॉपर ऑक्सीडेस सीजीएफईटी 3 और कॉपर ट्रांसपोर्टर सीजीसीसीसी 2 एवं एक माइटोक्रॉन्ड्रियल फ्रेक्टेक्सिन सीजीवायएफएच 1 अभिज्ञात किया गया है जो उच्च बंधुता अपचायक आयरन परिवहन का प्रधान मूल घटक है और आयरन चयापचय उपकरण के साथ क्रमशः यह सिद्ध करता है कि उच्च बंधुता आयरन अधिग्रहण प्रक्रियाएं जीवों में निर्णायक रोगजनक निर्धारक हैं। पादप सूक्ष्मजीव अंत:क्रिया प्रयोगशाला में कोरम सेंसिंग की भूमिका का अध्ययन जेंथोमोनास ओरिजी पीवी ओरिजी कोला में साइडेरोफोर वाइब्रियोफेरिन के उत्पोदन का नियमन करने में देखी गई है, जो पौधों में वृद्धि और रोगजनकता के लिए आवश्यक है।

स्तनधधारी आनुवंशिकी प्रयोगशाला के कार्यों में कार्सिनोजेनेसिस और विकास में डीएनए मिथेलट्रांसफरेस डीएनएमटी 3 एल और डीएनएमटी 2 की भूमिका को समझा गया है। इसने एपिजेनेटिक बदलावों को भी अभिज्ञात किया है जो मेजबान कोशिका में माइकोबैक्टीरियम ट्यूबरकुलोसिस के साथ चुनौती देने पर आते हैं। आण्विक कोशिका जीव विज्ञान प्रयोगशाला द्वारा रिपोर्ट किया गया

है कि एम. ट्यूबरकुलोसिस के ईएसएटी-6 प्रोटीन मेजबान बीटा2एम के साथ अंतःक्रिया करते हैं तथा वर्ग 1 माध्मित एंटीजन प्रस्तुततीकरण का संदमन करते हैं। समूह में एम. ट्यूबरकुलोसिस के पीपीई प्रोटीनों द्वारा एंटी तथा प्रोइफ्लेमेटरी प्रतिक्रियाओं के नियमन में शामिल टीएलआर 2 के एक नए आईआरएके 3 सिग्नलिंग मार्ग डाउन स्ट्रीम को भी अभिज्ञात किया गया है।

सिल्क्मॉथ आनुवंशिकी एवं जीनोमिक्स उत्कृष्टता केन्द्र में किए गए अनुसंधान में दर्शाया गया है कि बॉम्बिक्स लिंग गुणसूत्र जेड में मात्रा का मुआवज़ा दिया जाता है, इसके साथ ही अभिव्यक्ति ऑटोसोम से आधे से भी कम हो जाती है। केन्द्र को बहु स्थान परीक्षणों के आयोजन के लिए औपचारिक अनुमति प्राप्त हो गई है, जिसमें आनुवंशिक रूप से निर्मित सिल्कमॉथ विभेदों की निहित सुविधाएं शामिल हैं।

न्यूरोस्पोरा आनुवंशिकी प्रयोगशाला को अप्रभावी उत्परिवर्तन के लिए साक्ष्य प्राप्त हुआ है जो खास तौर पर वैकल्पिक विखंडन को प्रभावित करता है और इसके साथ समवर्ती 1 सेग्रीगेशन पर कोई प्रभाव दिखाई नहीं देता। अनुलेखन प्रयोगशाला में आरएचओ आश्रित अनुलेखन समापन के आण्विक आधार का मॉड्यूलेशन दर्शाया गया है, जिसके द्वारा दो अनुलेखन कारक एनयूएसए और एनयूएसजी तथा एनयूएसए के बैक्टीरियोफेज एन द्वारा एंटी टर्मिनेटर में रूपांतरण की प्रक्रिया को समझा गया है।

इस वर्ष भी पिछले वर्ष के समान सीडीएफडी के अनेक संकाय सदस्यों तथा अध्येताओं को प्रतिष्टित पुरस्कार और सम्मान प्राप्त हुए हैं। इन पुरस्कारों में अन्य के अलावा आईसीएमआर बसंती देवी अमिर चंद पुरस्कार, इंसा और रॉयल सोसाइटी, एडिन बर्ग के बीच वैज्ञानिकों के आदान प्रदान के तहत अध्येक्तावृत्ति, छठवें एफईबीएस उन्नत व्याख्यान पाठ्यक्रम में मानव कवक रोगाणुओं पर आरंभिक व्याख्यातता ; डीएसटीफ्एसईआरबी फास्ट ट्रेक युवा वैज्ञानिक पुरस्कार ; ए पी अकादमी ऑफ साइंस की ओर से युवा वैज्ञानिक पुरस्कार ; डॉ. के वी राव अनुसंधान पुरस्कार ; श्यामा प्रसाद मुखर्जी अध्येतावृत्ति ; एएसएम यात्रा पुरस्कार; आईसीएमआर यात्रा अनुदान; प्रो. जी पी तलवार ट्रेवल बर्सरी ; डीएसटी यात्रा अनुदान आदि। इस अवधि के दौरान

चार अनुसंधान अध्येताओं को पीएचडी की उपाधि प्रदान की गई। अनेक पोस्ट डॉक्टरल अध्येता, परियोजना सहयोगी और ग्रीष्मकालीन प्रशिक्षु सीडीएफडी में कार्य करते हैं और केन्द्र की गतिविधियों में उल्लेखनीय भूमिका निभाते हैं।

केन्द्र के आगामी परिसर की निर्माण गतिविधियां पूरी तेजी पर सरकार की व्यय वित्त समिति द्वारा पूर्व अनुमोदित योजना के अनुसार जारी हैं।

मैं इस अथक सहयोग के प्रति आभार व्यक्त करता हूं जो इसकी गतिविधियों के लिए शासी परिषद, अनुसंधान क्षेत्र

पैनल - वैज्ञानिक सलाहकार समिति, शैक्षिक / वित्तीय / भवन समितियों तथा बेशक जैव प्रौद्योगिकी विभाग की ओर से प्रदान किया गया। मैं सभी सदस्यों और अधिकारियों को उनके द्वारा दिए गए समय तथा हमारी गतिविधियों और उपलब्धियों के समर्थन हेतु किए गए प्रयासों के लिए धन्यवाद देता हूं।
मैं सीडीएफडी परिवार के प्रति भी अपना हार्दिक आभार व्युक्त करता हूं जिसने केन्द्र के जारी कार्यक्रमों तथा विकास में एक अहम भूमिका निभाई है।

ज गौरीशंकर
31 मार्च, 2015

Director's Message

I have great pleasure in presenting the Annual Report of the Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad. The institute was established in 1996 and has since excelled in its diverse activities. The institute provides services in the areas of DNA fingerprinting, diagnostic tests for human genetic disorders and analysis of basmati rice for purity, and is also engaged in basic research activities in different disciplines of modern biology. A few of the major achievements and research findings from the Centre this year are given below, the details of which are covered in the descriptions by the individual laboratories that are enclosed in this Report.

During the period 2014-15, the Laboratory of DNA Fingerprinting Services received ~ 550 cases that were forwarded by the judiciary and law enforcing agencies of State and Federal Governments and the DNA Examiners have defended their reports in various Courts of law throughout the country. The Lab has procured the Combined DNA Index System (CODIS) software from the Federal Bureau of Investigation (FBI), USA, which will aid in matching of DNA profiles stored in a DNA Data Bank for both criminal justice delivery and civil proceedings. As regards the Human DNA Profiling Bill, the Centre is coordinating with the Department of Biotechnology, Government of India, to finalize the draft Bill for enactment by Parliament.

The Diagnostics division provided genetic services to around 3700 patients for various genetic diseases. A DNB program in Medical Genetics has been initiated, as also fellowship programs in Clinical Cytogenetics and Clinical Molecular Genetics.

In view of the complexities and challenges arising in Basmati adulteration testing, efforts are being made by the APEDA-CDFD Centre for Basmati DNA Analysis to further expand adulteration testing protocol. Towards this direction, the Centre extended the method of multiplexed eight markers panel for identification of all notified Basmati varieties to generate a comprehensive database. The Centre also standardized single grain analysis for varietal identification of Basmati rice.

The Laboratory of Cell Cycle Regulation has identified RBP2 as the H3K4me3 demethylase that interacts with the transactivation domain

of E2F4 protein. The research results of this laboratory show that while all MLL complexes, namely MLL, MLL2, MLL3 and SET 1A play a role in regulating S phase progression, it is only MLL and SET 1A that are responsible for facilitating M phase progression. The Laboratory of Molecular Oncology has identified the first non-Wnt (12gene) signature for early onset sporadic rectal cancer in humans.

The Laboratory of Cell Signalling demonstrated that IP_{7} pyrophosphorylates the oncoprotein $\mathrm{c}-\mathrm{Myc}$ and regulates its half-life and ubiquitylation. Research in this Laboratory has shown that male mice lacking IP6K1 display infertility due to defects in post-meiotic differentiation of round spermatids to mature elongated spermatids, leading to azoospermia.The Laboratory of Chromatin Biology and Epigenetics discovered Sup1, which is a DNA polymerase alpha associated replication factor, as a novel interactor of fission yeast Sirtuin Hst4.
The Laboratory of Computational Biology established that viral proteins harbor motifs that mimic eukaryotic linear motifs (ELM) and bind to human proteins harboring ELM-binding domains. The Laboratory of Computational \& Functional Genomics has characterized Human HYPK protein and demonstrated how it may sense and interfere with aggregation prone proteins like Huntingtin.
Working with Candida glabrata, the Laboratory of Fungal Pathogenesis identified an iron permease CgFtr1, a multicopper oxidase CgFet3 and a copper transporter CgCcc 2 , and a mitochondrial
frataxin CgYfh1, as principal bonafide constituents of the high-affinity reductive iron transport and the iron metabolic apparatus, respectively, and furthermore established that high-affinity iron acquisition mechanisms are critical virulence determinants in the organism. The Laboratory of Plant-Microbe Interactions has studied the role of quorum sensing in regulating the production of siderophore vibrioferrin in Xanthomonas oryzae pv. oryzicola, which is required for in planta growth and virulence.

The work of Laboratory of Mammalian Genetics has dissected out the role of DNA methyltransferases Dnmt3I and Dnmt2 in carcinogenesis and development. It has also identified epigenetic changes that the host cell undergoes when challenged with Mycobacterium tuberculosis. The Laboratory of Molecular Cell Biology report that ESAT-6 protein of M. tuberculosis interacts with host $\beta 2 \mathrm{M}$ and suppress class-I mediated antigen presentation. The group has also identified a novel IRAK3 signaling pathway downstream of TLR2 involved in regulation of anti- and pro-inflammatory responses by PPE proteins of M. tuberculosis.

Research at the Centre of Excellence in Silkmoth Genetics and Genomics has shown that the Bombyx sex chromosome Z is dosage compensated, with its expression just over half that of the autosomes. Formal permission has been received by the Centre for the conduct of multilocational trials in contained facilities of genetically engineered silkmoth strains.

The Laboratory of Neurospora Genetics found evidence for a recessive mutation that specifically affects alternate segregation, with apparently no effect on adjacent 1 segregation. The Laboratory of Transcription have deciphered the molecular basis of modulation of Rhodependent transcription termination by the two transcription factors NusA and NusG, as well as
the mechanism of conversion of NusA into an antiterminator by the bacteriophage protein N .

This year too as in previous years, several of the CDFD faculty and scholars have been recipients of prestigious awards and honours. The awards include, amongst others, the ICMR Basanti Devi Amir Chand Prize; fellowship under the Exchange of Scientists Programme between INSA and Royal Society, Edinburgh; Plenary Lecturer in the $6^{\text {th }}$ FEBS Advanced Lecture Course on Human Fungal Pathogens; DST-SERB Fast track Young Scientist Award; Young Scientist Award from the AP Akademi of Sciences; Dr KV Rao Research Award; Shyama Prasad Mukherjee Fellowship; ASM Travel Award; ICMR Travel Grant; Prof GP Talwar Travel Bursary; DST travel grant etc. During this period, four research scholars were conferred with PhD degrees. Many postdoctoral fellows, project associates and summer trainees work at CDFD and play significant roles in the Centre's activities.

The Centre's permanent campus construction activities are progressing in full swing as per the plans approved earlier by the Expenditure Finance Committee of the Government.

I take this opportunity to acknowledge the unstinted co-operation which the Centre has received for its activities from the Governing Council, Research Area Panels-Scientific Advisory Committee, Academic/Finance/Building Committees and, of course, the Department of Biotechnology. I wish to thank all the members and officials for their time and effort in supporting our activities and achievements.

I also express my gratitude to the CDFD family who have played a crucial role in the ongoing programs at and development of the Centre.

J Gowrishankar

March 31, 2015

सेवाएँ
Services

LABORATORY OF DNA FINGERPRINTING SERVICES

Faculty	Madhusudan Reddy Nandineni	Staff Scientist
Other members	SPR Prasad	Senior Technical Officer
	Ch V Goud	Technical Officer
	Devinder Singh Negi*	Technical Officer
	Devinder Kumar	Technical Officer
	Sanjukta Mukerjee	Technical Officer
	S Naveenchandra	Technical Officer
	Neelima Thota	Technical Officer
	Pooja Tripathi	Technical Officer
	Joshi Kiranmai	Technical Officer
	Girnar Vijay Amrutarao	Technical Assistant
	Shruti Das Gupta	Technical Assistant
Coordinator	Chandra Shekhar Singh**	Technical Assistant
	DP Kasbekar	Haldane Chair

(*Posted at DNA Profiling Laboratory of CDFD (DPL-CDFD) at the Institute of Life Sciences, Bhubaneswar, Odisha State until 17 Nov. 2014)
(**Posted at DPL-CDFD at the Institute of Life Sciences, Bhubaneswar, Odisha State until 14 Aug. 2014)

Objectives

1. To provide DNA fingerprinting services in cases forwarded by law-enforcing agencies / judiciary of State and Federal Governments, relating to murder, rape, paternity, maternity, child swapping, body identification, organ transplantation, etc;
2. To develop human resources skilled in DNA fingerprinting, to cater to the needs of State and Federal Government agencies;
3. To impart periodical training to manpower involved in DNA fingerprinting sponsored by State and Federal Government agencies;
4. To provide advisory services to State and Federal Government agencies in establishing DNA Fingerprinting facility; and
5. To create DNA marker databases of different populations of India.
Summary of services provided until the beginning of this reporting year (upto March 31, 2014)

A total number of 403 cases were received for DNA fingerprinting examination during the previous reporting period (2013 - 2014). Of these 256 cases were related to identification of deceased, 73 cases were related to paternity
/ maternity, 46 cases were pertaining to sexual assault (rape), 23 cases were related to murder and 5 cases were pertaining to biological relationship (organ transplantation). Sixteen states, Union Territories of India and one foreign country (Timor Leste) have availed DNA fingerprinting services of CDFD during this period. Andhra Pradesh forwarded the highest number of cases (233) followed by Madhya Pradesh (53), Odisha (45), Chhattisgarh (18), Punjab (14), Delhi (7), Goa (6), Uttar Pradesh (6), Karnataka (5), Maharashtra (5), Bihar (2), Kerala (2), Puducherry (2), Uttarakhand (2), Andaman \& Nicobar Islands (1), Jammu \& Kashmir (1), and Democratic Republic of Timor-Leste (1).

Details of services provided in the current reporting year (April 1, 2014 - March 31, 2015
Breakup of the cases during this reporting period is given below under following heads:
Biological relationship 014
Identity of deceased 280
Murder 013
Paternity/Maternity 101
Sexual assault (Rape) 151
Total number of cases $\underline{559}$

A total number of 559 cases were received for DNA fingerprinting examination during the current reporting period (2014 - 2015). Of these, 280 cases were related to identification of deceased, 151 cases were pertaining to sexual assault (rape), 101 cases were related to paternity / maternity, 14 cases were pertaining to biological relationship (organ transplantation) and 13 cases were related to murder. Eighteen States, Union Territories of India and one foreign country (East Timor) have availed DNA fingerprinting services of CDFD during this period. Madhya Pradesh forwarded the highest number of cases (197) followed by Andhra Pradesh (103), Telangana (79), Chhattisgarh (40), Odisha (29 cases, of which 18 were received at ILS, campus), Uttar

Pradesh (29), Punjab (26), Goa (15), Tamilnadu (13), Karnataka (6), Puducherry (5), Kerala (4), Maharashtra (3), Delhi (2), Jammu \& Kashmir (1), West Bengal (1) and Democratic Republic of Timor-Leste (1) (Fig. 1).
During this reporting period, an amount of Rs.1,19,69,837/- (Rupees one crore, nineteen lakhs, sixty nine thousand, eight hundred and thirty seven only) has been received towards DNA fingerprinting analysis charges, which is inclusive of service charge as levied by Govt. of India.

The cases involving identification of the deceased (50\%), sexual assault (27\%) and paternity/ maternity (18\%) constituted the bulk of the cases received (Fig. 2).

Summary of the State-wise breakup of DNA fingerprinting cases

Name of the State	Biological relationship	Identity of deceased	$\begin{aligned} & \text { Maternity } \\ & \text { / Paternity } \end{aligned}$	Murder	Sexual assault (Rape)	Total No. of Cases
Andaman \& Nicobar		1	1			2
Andhra Pradesh		99	4			103
Bihar		1	2			3
Chhattisgarh		19	18		3	40
Delhi		2				2
Goa		11	3		1	15
Jammu \& Kashmir		1				1
Karnataka			6			6
Kerala		3	1			4
Madhya Pradesh	1	58	31	8	99	197
Maharashtra			3			3
Odisha		11	11	3	4	29
Puducherry		2	3			5
Punjab		2	1		23	26
Tamilnadu	11	1	1			13
Telangana	2	60	15	1	1	79
Uttar Pradesh		7	1	1	20	29
West Bengal		1				1
Timor Leste		1				1
Total No. of Cases.	14	280	101	13	151	559

Figure 1. State-wise distribution of cases received during this reporting year.

Figure 2. Types of cases received (\%).

Prominent cases during April 1, 2014 to March 31, 2015

- Cases from National Investigation Agency (NIA) involving national security and public safety
- Sexual assault and homicide case of a Research Scholar in Agra, forwarded by the Central Bureau of Investigation (CBI), New Delhi
- Sexual assault and homicide case of two cousins in Badaun district of Uttar Pradesh, forwarded by the CBI
- Identification of victims of fire accident in crackers factory in Vishakhapatnam forwarded by the A.P. Forensic Science Laboratory, Hyderabad
- Identification of unknown human skeletal remains forwarded by the National Health Laboratory, Democratic Republic of TimorLeste

Deposition of evidence in Courts of Law

During this reporting year, the DNA experts defended their reports in 14 cases in various Honorable Courts throughout the country.

```
Training/Lectures/Workshops on DNA
fingerprinting examination
```


Training

1. Training on DNA fingerprinting techniques to personnel from Rajiv Gandhi Centre for BioTechnology, Trivandrum, Kerala during 2-13 June 2014.
2. Training in Combined DNA Index System (CODIS) software procured from the Federal Bureau of Investigation (FBI), USA at CDFD for the benefit of DNA Examiners during 7-11 October 2014.

Lectures/Workshops

1. Lecture was delivered at CDFD for the benefit of the Post Graduate students from K. J. Somaiya College of Science and Commerce, Vidyavihar, Mumbai on 09.07.2014.
2. Lecture was delivered for the benefit of the Officers form National Investigating Agency, Hyderabad on 04.08.2014.
3. Lecture was delivered for the benefit of Police Officials at North Eastern Police Academy, Umsaw, Meghalaya on 18.11.2014.
4. Lecture was delivered at CDFD to faculty members from Criminology \& Forensic Science School of Social Work, Kankandy,

Mangalore on 03.12.2014.
5. Lecture was delivered at CDFD for the benefit of the Air Force Officers from Air Force Intelligence School, Lohegaon, Pune on 02.02.2015.
6. Lecture was delivered at CDFD for the benefit of the Post Graduate students from Modern College of Arts, Science and Commerce, Ganeshkhind, Pune on 03.03.2015.

Publications

1. Ballantyne KN, Ralf A, Aboukhalid R, Achakzai NM, Anjos MJ, Ayub Q, Balazic J, Ballantyne J, Ballard DJ, Berger B, Bobillo C, Bouabdellah M, Burri H, Capal T, Caratti S, Cárdenas J, Cartault F, Carvalho EF, Carvalho M, Cheng B, Coble MD, Comas D, Corach D, D'Amato ME, Davison S, de Knijff P, De Ungria MC, Decorte R, Dobosz T, Dupuy BM, Elmrghni S, Gliwiński M, Gomes SC, Grol L, Haas C, Hanson E, Henke J, Henke L, Herrera-Rodríguez F, Hill CR, Holmlund G, Honda K, Immel UD, Inokuchi S, Jobling MA, Kaddura M, Kim JS, Kim SH, Kim W, King TE, Klausriegler E, Kling D, Kovačević L, Kovatsi L, Krajewski P, Kravchenko S, Larmuseau MH, Lee EY, Lessig R, Livshits LA, Marjanović D, Minarik M, Mizuno N, Moreira H, Morling N, Mukherjee M, Munier P, Nagaraju J, Neuhuber F, Nie S, Nilasitsataporn P, Nishi T, Oh HH, Olofsson J, Onofri V, Palo JU, Pamjav H, Parson W, Petlach M, Phillips C, Ploski R, Prasad SPR, Primorac D, Purnomo GA, Purps J, Rangel-Villalobos H, Rębała K, Rerkamnuaychoke B, Gonzalez DR, Robino C, Roewer L, Rosa A, Sajantila A, Sala A, Salvador JM, Sanz P, Schmitt C, Sharma AK, Silva DA, Shin KJ, Sijen T, Sirker M, Sivakova D, Skaro V, Solano-Matamoros C, Souto L, Stenzl V, Sudoyo H, SyndercombeCourt D, Tagliabracci A, Taylor D, Tillmar A, Tsybovsky IS, Tyler-Smith C, van der Gaag KJ, Vanek D, Völgyi A, Ward D, Willemse P, Yap EP, Yong RY, Pajnic IZ and Kayser M (2014). Toward male individualization with rapidly mutating y-chromosomal short tandem repeats. Human Mutation 35: 10211032.
2. Parine NR, Lakshmi P, Kumar D, Shaik JP, Alanazi M and Pathan AAK (2015). Development and characterisation of nine polymorphic microsatellite markers for Tephrosia calophylla Bedd. (Fabaceae). Saudi Journal of Biological Sciences 22: 164-167.

DIAGNOSTICS DIVISION

Faculty	Ashwin Dalal
Adjunct Faculty	Prajnya Ranganath Shagun Aggarwal
PhD Students	Anusha Uttarilli Ashish Bahal Anjana Kar Deshpande Dipti Vijayrao
Other Members	Aneek Das Bhowmik Maria Celestina Vanaja
	Nillawar Anup Narayanrao
	Sowmya Gayatri
	Matta Divya
	P Rajitha
	Angalena R
	Dutta Usha Rani
	M Muthulakshmi
	A Sobhan Babu
	S Jamal Md Nurul Jain
	S Vasantha Rani
C Krishna Prasad	
R Sudheer Kumar	
Rahila Qureshi	

Staff Scientist
Assistant Professor, NIMS
Assistant Professor, NIMS
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
(Since Jul. 2014)
Research Associate
Research Associate
(Since Jan. 2015)
SIAMG Fellow
(From Sep. 2014 till Feb. 2015)
SIAMG Fellow
(Since Sep.2014)
Project-Junior Research Fellow
Technical Officer
Senior Technical Officer
Technical Officer
Technical Officer
Technical Officer
Technical Officer
Technical Officer
Technician
Technician
Laboratory Technician
(From Feb. 2015 to Mar. 2015)

Objectives

1. To conduct genetic evaluation for patients/ families with genetic disorders;
2. To develop new methods and assays for genetic analysis and engage in research on chromosomal and single gene disorders;
3. To act as national referral center for analysis and quality control of genetic tests for few genetic diseases; and
4. To impart training in genetic evaluation of patients with genetic disorders.
Details of services provided in the current reporting year (April 1, 2014 - March 31, 2015)

Clinical Genetics

A total of 3705 patient samples were analysed for genetic testing, during the year 2014-15. These consisted of patients with chromosomal
disorders, monogenic disorders, mental retardation, congenital malformations, inborn errors of metabolism, and other familial disorders. A fellowship program for training in Clinical Cytogenetics and Clinical Molecular Genetics has been initiated in collaboration with Society for Indian Academy of Medical Genetics and one student each joined for the fellowship program.

The Department of Medical Genetics established at Nizam's Institute of Medical Sciences, Hyderabad is functioning successfully. A total of 2571 patients were examined and counseled in the unit during 2014-15. A 3 year training program for Diplomate of National Board (DNB) in Medical Genetics has been initiated with affiliation to National Board of Examinations, New Delhi. The entrance exams were held in December 2014 and two students have joined for DNB in Medical Genetics in April 2015.

Genetic investigations done during 2014-2015

Investigation	Total cases	Positives
Cytogenetics	1388	$139(10.01 \%)$
Proband	1260	$133(10.5 \%)$
Prenatal	0128	$6(4.7 \%)$
Molecular Genetics	1488	$518(35 \%)$
Proband	1398	$499(35.7 \%)$
Prenatal	0090	$19(21 \%)$
Biochemical Genetics	0829	$249(30 \%)$
Proband	0804	$241(30 \%)$
Prenatal	0025	$8(32.0 \%)$

Cytogenetics

Disease	Abnormality	No of cases
Down	$47, \mathrm{XY},+21$	34
	$47, \mathrm{XX},+21$	15
	$46, \mathrm{XY}, \mathrm{rob}(14 ; 21)+21$	5
	$46, \mathrm{XX}, \mathrm{rob}(21 ; 21)+21$	1
	$46, \mathrm{XX}, \mathrm{rob}(14 ; 21)+21$	1
	$46, \mathrm{XX}, \mathrm{rob}(13 ; 14)+21$	1
Edward	$47, \mathrm{XX}+21 / 46, \mathrm{XX}$	1
syndrome	$47, \mathrm{XY},+21,9 \mathrm{qh}+$	1
Patau Syndrome	$47, \mathrm{XX},+18$	1
Turner syndrome	$47, \mathrm{SC},+18$	2
	$47, \mathrm{SC},+13$	1
	Monosomy $\mathrm{X}(45, \mathrm{X})$	8
Klinefelter	mos $45, \mathrm{X} / 46, \mathrm{XY}$	4
Syndrome	mos $45, \mathrm{X} / 46, \mathrm{X}, \mathrm{i}(\mathrm{X})$	1
Triple X Syndrome	$47, \mathrm{XXY}$	11
Sex reversal	$47, \mathrm{SC}$	1
	$47, \mathrm{XXX}$	1
Aneuploidy	Phenotypic female with $46, \mathrm{XY}$	1
	Phenotypic male with $46, \mathrm{XX}$	1

Structural chromosomal abnormalities

Inversions	
$46, \mathrm{XX}, \operatorname{inv}(10)$	1
$46, \mathrm{X}, \operatorname{inv}(\mathrm{Y})$	1
Deletions	
$46, \mathrm{XY}, 18 \mathrm{p}-$	1
$46, \mathrm{XY}, \operatorname{del}(5)(\mathrm{p})$	1
$46, \mathrm{XY}, \operatorname{del}(7)(\mathrm{p} 32)$	1
Duplications	
$46, \mathrm{XX}$, dup(4)	1
$46, \mathrm{XY}$, add(17)(p12)	1
$46, \mathrm{SC}$, add(15)(q23.4)	
Translocations	1
$45, \mathrm{XY}$, rob(13;14)(p11.1;p11.1)	1
$45, \mathrm{XX}$, rob(14;15)(q10;q10)	

45,XX,t(14;21)(q10;q10)	1
46, XX,t(5;10)(p15.3;q24.3)	1
46,XX,t(1;22)(q25;q11.2)	1
46,XX, der(10),t(5;10)(q23;q26)	1
46,XX,t(10;11)	1
46,XY,t(1;10)	1
46,XY,t(5;11)(p15.3;p11.2)	1
46,XX,t(1;12)(p36.1;q13);inv9	1
46,XY,t(3;16)(q21;p13.3);inv(9)	1
46,XY,t(5;14)(p15.1;q12)	1
46,XY, der(5),t(5;10)mat	1
46,SC, der(5),t(5;10)mat	1
Polymorphic variants	25

Fluorescence in situ Hybridization (FISH)

Disease/translocation	Probe	No of tests
Prader-Willi Syndrome	SNRPN(15q11)/PML(15q24)	1
1p36 deletion syndrome	1p36 probe	3
Di-George Syndrome	TUPLE(22q11.2)/ARSA(22q13)	4
Marker chromosome	WCP-11, WCP-13, 9, 18 SE $(X)(Y)$, Acro-p-arm	12
Spectral karyotyping		2

Quantitative Fluorescent PCR (QF-PCR)

MLPA	Cases	Positives
Prenatal (Aneuploidy)	65	2
Postnatal (Microdeletion syndromes)	70	12

Quantitative Fluorescent PCR (QF-PCR)

Disease/Test	Positives
Urine \& Blood Metabolic Screening tests (N=232)	60
Amino acid disorders (N=183)	39
Non Ketotic Hyperglycinemia	13
Hyperornithinemia	5
Tyrosinemia	2
Phenylketonuria	1
Other amino acid disorders	18

Lysosomal storage disorders $\mathbf{(N = 3 8 9)}$	142
Hurler syndrome(17)	9
Hunter syndrome(21)	15
Sanfilippo B (19)	11
Morquio A disease (31)	28
Arylsulphatase B (13)	6
Sly disease (5)	0
GM1-Gangliosidosis (76)	8

Gaucher disease (23)	6
Krabbe disease (21)	3
Pompe disease (10)	4
Niemann Pick disease (35)	18
Mucolipidosis(12)	7
Metachromatic Leukodystrophy (65)	18
Fabry's disease(3)	0
Mannosidosis (4)	0

Hexosaminidase A/B (34)	
Tay Sachs disease	3
Sandhoff disease	6
Prenatal diagnosis (25)	8
Metachromatic Leukodystrophy	1
Hunter syndrome	1
Morquio A disease	2
GM1- Gangliosidosis	4

Molecular Genetics

Name of disorders	No of cases	Positive	Negative		
DMD/BMD	255	179	76		
DMD Carrier Analysis	34	09	25		
Spinal Muscular Atrophy	131	68	63		
SMA Carrier Analysis	56	27	29		
		Normal	Homozygous	Heterozygous	Compound Heterozygous
β thalassemia and Sickle cell anemia	151	11	88	33	19
Factor V Leiden	253	242	01	10	-
Factor II mutation	156	156	-	-	-
Cystic Fibrosis	113	100	08	05	-
Pancreatitis	15	11	02	02	-
Connexin 26	09	07	-	02	-
Achondroplasia	10	03	-	07	-
Hemophilia	15	10	04	01	-
Triplet Repeat Disorders		Positive	Negative		
Friedreich Ataxia	44	17	27		
Myotonic Dystrophy	22	17	05		
Huntington Disease	55	36	19		
SCA Panel ($1,2,3,6$ \&)	83	18	65		
DRPLA	10	02	08		
Fragile X Syndrome	76	04	72		

Prenatal Diagnosis	No of cases	Positive	Negative		
DMD	09	03	06	-	-
Spinal Muscular atrophy	12	02	10	-	-
Cystic Fibrosis	08	01	07	-	-
		Normal	Homozygous	Heterozygous	Compound Heterozygous
β thalassemia	61	10	09	38	04

Diagnostics Research

Project 1:Human exome sequencing for identification of novel genes in rare mendelian disorders.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

Single gene disorders are rare by themselves but collectively they are an important cause of morbidity and mortality. The identification of genes for single gene disorders has value, not only in prenatal diagnosis and genetic counselling of affected families, but also in basic research towards understanding gene functions and mechanisms of disease. Till date more than 3000 genes causing single gene disorders have been identified using classical linkage analysis methods but still a large number remains to be characterized. The availability of massively parallel sequencing technologies have made it possible to identify gene for a particular disease using just a few affected individuals. Over the past years of providing services in clinical genetics, we have identified several interesting novel disorders and syndromes with a single gene pattern of Mendelian inheritance. We plan to employ exome sequencing to identify novel genes in such families.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
We have performed exome sequencing for two families with rare autosomal recessive disorders. Proband in the first family had complex hand malformations, which have been reported as Camptosynpolydactyly (OMIM: 607539). Patient was born out of consanguineous union. This family also had a pregnancy with fetus showing similar features and hence terminated. Exome sequencing was done using Illumina platform followed by mapping of the reads to reference genome and detection of variants. Filtering for known SNPs, silent, homozygous variants revealed presence of 54 novel likely pathogenic (predicted) variants. Of these, the c.220_221delinsTT mutation leads to p.E74L change in BHLHA9 gene, which is predicted to be pathogenic. Earlier reports have implicated duplication of this gene in patients with split hand foot malformation. Missense mutations in BHLHA9 have been recently reported in patients with MSSD (Mesoaxial synostotic syndactyly with phalangeal reduction). Our patient is showing mutation in the same domain of the BHLHA9 gene as reported earlier in cases with MSSD.

The reason for marked difference in phenotype is not clear but it appears that both MSSD and Camptosynpolydactyly are allelic disorders. Functional characterization is being planned to characterize the mutation and its effects on protein function.
Second family had two female siblings affected with microcephaly, macular degeneration and short stature and were born out of consanguineous marriage. The younger sibling was also diagnosed with Wilms tumor in kidney. Exome sequencing showed presence of 34 novel likely pathogenic (predicted) variants. Out of 34 variants a novel variant in BUB1B, c.1670G>T which leads to p.S557l, is predicted to be highly pathogenic. Mutations in BUB1B are known to cause Mosaic variegated aneuploidy syndrome 1 (MVA1, 257300). With the help of exome sequencing we could diagnose this rare disease in the patient and further characterization of this novel variant will throw light on functions of this protein.

Project 2: Clinical, biochemical and molecular analysis of lysosomal storage disorders.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

Lysosomal storage disorders are a heterogeneous group of disorders associated with specific lysosomal enzyme deficiency. The diagnosis in most of these disorders is based on enzyme assay. There is a large amount of overlap in enzyme levels among carriers and normal people; hence it is very difficult to detect carriers by enzyme assay. Mutation detection is helpful for carrier detection and accurate prenatal diagnosis. Our study aims to characterize the clinical features, biochemical parameters and molecular defects in common lysosomal storage disorders.
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
Over last five years we have been able to identify mutations in 250 patients with different lysosomal storage diseases (LSDs) (Table 1). This study has revealed the mutation spectrum in patients with LSDs in the Indian population.

The novel mutations identified in the MPS VI patients were functionally characterized by use of molecular techniques of RNA isolation, Reverse transcriptase PCR \& cDNA synthesis, cloning and site directed mutagenesis (SDM). COS-7 cells

Figure 1. Candidate gene identification in families with rare autosomal recessive disorder.
(A1) Clinical picture in Family 1(Camptosynpolydactyly)
(A2) Pedigree of Family 1
(A3) Variant Statistics information of F1C from family 1
(A4) NEXTgene viewer report of BHLHA9 c.220_221delinsTT
(B1) Pedigree of Family 2 (microcephaly, macular degeneration and short stature)
(B2) Variant statistics information of patient F2C from family 2
(B3) NEXTgene viewer report of BUB1B c.1670G>T
(B4) Electrophoregrams showing normal and mutant sequence for $\mathrm{c} .1670 \mathrm{G}>\mathrm{T}$.

Lysosomal Storage Disorder	Gene	Number of cases	Total mutations	Novel mutations
Niemann-Pick disease types A \& B	SMPD1	81	60	26
Metachromatic leukodystrophy	ARSA	79	56	23
Mucopolysaccharidosis I	IDUA	31	22	15
Mucopolysaccharidosis II	IDS	33	20	7
Mucopolysaccharidosis VI	ARSB	38	24	18
Sialidosis	NEU1	5	3	3
Total		$\mathbf{2 5 0}$	$\mathbf{1 8 5}$	$\mathbf{9 2}$

Table 1. Data sheet showing mutation analysis for LSDs
maintained in DMEM media were transfected with plasmid DNA of wild type ARSB as well as other mutant cDNA clones constructed by SDM. Cells were harvested after 48 hrs of transfection
and cell lysates were used for lysosomal ARSB enzyme assay. The enzyme assay performed for the COS7 cells with over expressed ARSB mutant clones, showed a significant reduction in
the enzyme activities when compared to the wild type ARSB clone. This suggests that the mutants severely affect function of the ARSB protein. For western blot analysis the cell lysate containing protein extract was subjected to SDS-PAGE (10\% polyacrylamide) and transferred onto a PVDF Membrane. Western blot experiment was performed using standard protocol. The primary antibody was a polyclonal rabbit anti-ARSB and secondary antibody was a polyclonal goat anti-rabbit HRP labeled peroxidase-conjugated IgG prepared in 1 in 7000 dilution. The blot was developed by incubating the membrane in
a luminol solution for 2 min at RT in dark. The chemi-luminescent membrane was exposed to chemifluorescence. Presence of the signal for specific band was checked. Most of the missense mutations, such as D53N, P445L, W450C, L98R, W450L, H393R and D54N showed presence of the full length mutated ARSB protein even though the enzyme activity levels were < 10-13 \% of the wild type ARSB protein, whereas two mutants A237D and S320R showed very less amount of total ARSB protein indicating problems with synthesis, maturation or folding of the ARSB protein.

Figure 2. Functional characterization of mutations in ARSB gene
A. Graphical representation of enzyme activity in COS7 cells after transfection with cDNA mutant constructs (Y axisenzyme activity in $\mathrm{nmol} / \mathrm{hr} / \mathrm{mg}$ protein)
B. Western blot showing control lane 1 with untransfected COS7 cells, pcDNA 3.1 lane 2 with vector transfected COS 7 cells, pcDNA 3.1-ARSB lane 3 with over expressed normal COS7 cells and lane 3-14 for various mutants. 60 kD band corresponds to ARSB protein whereas the 55 kD corresponds to the tubulin loading control

Publications

1. Aggarwal S, Coutinho MF, Dalal AB, Mohamed Nurul Jain SJ, Prata MJ and Alves S (2014). Prenatal skeletal dysplasia phenotype in severe MLII alpha/beta with novel GNPTAB mutation. Gene 542: 266-268.
2. Bashyam MD, Chaudhary AK, Kiran M, Nagarajaram HA, Devi RR, Ranganath P, Dalal A, Bashyam L, Gupta N, Kabra M, Muranjan M, Puri RD, Verma IC, Nampoothiri S and Kadandale JS (2014). Splice, insertiondeletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript
cause phenylketonuria in India. Journal of Cellular Biochemistry 115: 566-574.
3. Bashyam MD, Chaudhary AK, Kiran M, Reddy V, Nagarajaram HA, Dalal A, Bashyam L, Suri D, Gupta A, Gupta N, Kabra M, Puri RD, Ramadevi R, Kapoor S and Danda S (2014). Molecular analyses of novelASAH1 mutations causing Farber lipogranulomatosis: analyses of exonic splicing enhancer inactivating mutation. Clinical Genetics 86: 530-538.
4. BidcholAM, Dalal A, Shah H, SS, Nampoothiri S, Kabra M, Gupta N, Danda S, Gowrishankar K, Phadke SR, Kapoor S, Kamate M, Verma IC, Puri RD, Sankar VH, Devi AR, Patil SJ, Ranganath P, Jain SJ, Agarwal M, Singh A, Mishra P, Tamhankar PM, Gopinath PM, Nagarajaram HA, Satyamoorthy K and Girisha KM (2014). GALNS mutations in Indian patients with mucopolysaccharidosis IVA. American Journal of Medical Genetics 164A: 2793-2801.
5. *Chittem L, Bhattacharjee S and Ranganath P (2014). Craniosynostosis in a child with l-cell disease: the need for genetic analysis before contemplating surgery in craniosynostosis. Journal of Pediatric Neurosciences 9: 3335.
6. Dalal A (2014). Molecular cytogenetic characterization of chromosomal rearrangem ents - utility in genetic counseling and research. Molecular Cytogenetics (Suppl 1): I12. doi.10.1186/1755-8166-7-S1-I12.
7. Dutta UR, Ponnala R and Dalal A (2014). A novel de novo balanced reciprocal translocation $t(18 ; 22)$ associated with recurrent miscarriages: a case report. Journal of Reproduction \& Infertility 15: 113-116.
8. Dutta UR, Vempally S, Ranganath P and Dalal A (2014). A novel combined 15q11.2 duplication and a bisatellited supernumerary marker derived from chromosome 22 : molecular characterization of the marker. Gene 539: 162-167.
9. Kantaputra PN, Kayserili H, Guven Y, Kantaputra W, Balci MC, Tanpaiboon P, Tananuvat N, Uttarilli A and Dalal A (2014). Clinical manifestations of 17 patients affected with mucopolysaccharidosis type VI and eight novel ARSB mutations. American Journal of Medical Genetics 164A: 1443-1453.
10. Kantaputra PN, Kayserili H, Guven Y, Kantaputra W, Balci MC, Tanpaiboon P, Uttarilli A and Dalal A (2014). Oral manifestations of 17 patients affected with mucopolysaccharidosis type VI. Journal Inherited Metabolic Diseases 37: 263-268.
11. Love JM, Prosser D, Love DR, Chintakindi KP, Dalal AB and Aggarwal S (2014). A novel glycine decarboxylase gene mutation in an Indian family with nonketotic hyperglycinemia. Journal of Child Neurology 29: 122-127.
12. Nandagopalan RS, Phadke SR, Dalal AB and Ranganath P (2014). Novel mutations in PRG4 gene in two Indian families with camptodactyly-arthropathy-coxa varapericarditis (CACP) syndrome. Indian Journal of Medical Research 140: 221-226.
13. Naushad SM, Krishnaprasad C and Devi ARR (2014). Adaptive developmental plasticity in methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism limits its frequency in South Indians. Molecular Biology Reports 41: 3045-3050.
14. *Srinivas BH, Puligopu AK, Sukhla D and Ranganath P (2014). Rare association of spondylocostal dysostosis with split cord malformations type II: a case report and a brief review of literature. Journal of Pediatric Neurosciences 9:142-144.
15. Stephen J, Shukla A, Dalal A, Girisha KM, Shah H, Gupta N, Kabra M, Dabadghao P and Phadke SR (2014). Mutation spectrum of COL1A1 and COL1A2 genes in Indian patients with osteogenesis imperfecta. American Journal of Medical Genetics 164A: 1482-1489.
16. *Sukalo M, Fiedler A, Guzmán C, Spranger S, Addor MC, McHeik JN, Benavent MO, Cobben JM, Gillis LA, Shealy AG, Deshpande C, Bozorgmehr B, Everman DB, Stattin EL, Liebelt J, Keller KM, Bertola DR, van Karnebeek CD, Bergmann C, Liu Z, Düker G, Rezaei N, Alkuraya FS, Oğur G, Alrajoudi A, Venegas-Vega CA, Verbeek NE, Richmond EJ, Kirbiyik O, Ranganath P, Singh A, Godbole K, Ali FA, Alves C, Mayerle J, Lerch MM, Witt H and Zenker M (2014). Mutations in the Human UBR1 Gene and the Associated Phenotypic Spectrum. Human Mutation 35: 521-531.
17. Tsurusaki Y, Okamoto N, Ohashi H, Mizuno S, Matsumoto N, Makita Y, Fukuda M, Isidor B, Perrier J, Aggarwal S, Dalal AB, Al-Kindy A, Liebelt J, Mowat D, Nakashima M, Saitsu H, Miyake N and Matsumoto N (2014). Coffin-Siris syndrome is a SWI/SNF complex disorder. Clinical Genetics 85: 548-554.
18. Aggarwal S, Kar A, Bland P, Kelsell D and Dalal A (2015). Novel ABCA12 mutations in harlequin ichthyosis: A journey from photo diagnosis to prenatal diagnosis. Gene 556(2):254-256.
19. *Arora R, Aggarwal S and Deme S (2015). Ghosal hematodiaphyseal dysplasia-a concise review including an illustrative patient. Skeletal Radiology 44(3): 447-450.
20. Dalal AB, Ranganath P, Phadke SR, Kabra M, Danda S, Puri RD, VHS, Gupta N, Patil SJ, Mandal K, Tamhankar P, Aggarwal S and Agarwal M (2015). Prenatal diagnosis in India is not limited to sex selection. Genetics in Medicine 17: 88.
21. Das Bhowmik A, Rangaswamaiah S, Srinivas G and Dalal AB (2015). Molecular genetic analysis of trinucleotide repeat disorders (TRDs) in Indian population and application of repeat primed PCR. European Journal of Medical Genetics 58: 160-167.
22. Dutta UR, Hansmann I and Schlote D (2015). Molecular cytogenetic characterization of a familial pericentric inversion 3 associated with short stature. European Journal of Medical Genetics 58: 154-159.
23. *Gupta D, Gupta V, Singh V, Chawla S, Ranganath P and Phadke SR (2015). Study of polymorphisms in CFH, ARMS2 and HTRA1 genes as potential risk factors for age-related macular degeneration in Indian patients. International Journal of Bioassays 4: 3747-3752.
24. Stephen J, Girisha KM, Dalal A, Shukla A, Shah H, Srivastava P, Kornak U and Phadke SR. (2015). Mutations in patients with osteogenesis imperfecta from consanguineous Indian families. European Journal of Medical Genetics 58: 21-27.
25. *Aggarwal S and Phadke SR. Medical genetics and genomic medicine in India: current status and opportunities ahead. Molecular Genetics and Genomic Medicine (In press).
26. Anusha U, Ranganath P, Jamal Md NJS, Krishna Prasad C, Anupam S, Verma IC, Phadke SR, Puri RD, Danda S, Muranjan MN, Jevalikar G, Nagarajaram HA and Dalal AB. Novel mutations of the ARSB gene in Indian patients with Mucopolysaccharidosis Type VI. Indian Journal of Medical Research (In press).
27. Bidchol AM, Dalal A, Trivedi R, Shukla A, Nampoothiri S, Sankar VH, Danda S, Gupta N, Kabra M, Hebbar SA, Bhat RY, Matta D, Ekbote AV, Puri RD, Phadke SR, Gowrishankar K, Aggarwal S, Ranganath P, Sharda S, Kamate M, Datar CA, Bhat K, Kamath N, Shah H, Krishna S, Gopinath PM, Verma IC, Nagarajaram HA, Satyamoorthy K and Girisha KM. Recurrent and novel GLB1 mutations in India. Gene (In press).
28. Dalal A, Aneek Das Bhowmik, Divya Agrawal and Phadke SR. Exome sequencing and homozygosity mapping help in identification of genetic etiology for spastic ataxia in a consanguineous family. Indian Journal of Medical Research (In press).

Other publications

1. Dalal A (2014). Phenylketonuria: Past, present and future. Genetic Clinics 7: 1924.
2. Dutta UR (2014). Precision in chromosome identification with leads in molecular cytogenetics: an illustrated review. Journal of Pediatric Genetics Doi: 10.3233/PGE14083.
3. Ranganath P and Rai GK (2014). Marfan Syndrome: Recent advances in diagnosis and management. Genetic Clinics 7: 6-10.
4. Ranganath P (2014). Approach to Intellectual Disability. Genetic Clinics 7: 12-18.
5. Ranganath P and Dalal A (2014). Quality issues in medical genetics. Genetics in Clinical Practice 1st Edition 237-243.
6. Ranganath P (2014). Approach to a child with dysmorphism/ congenital malformation. Genetic Clinics 7: 11-17.
7. Ranganath $P(2015)$. Patterns of inheritance. In: postgraduate textbook of pediatrics. Ed. Piyush Gupta. Jaypee Brothers Medical Publishers 24-31.
[^0]
APEDA-CDFD CENTRE FOR BASMATI DNA ANALYSIS

Members	VV Satyavathi
	Sabahat Noor
Collaborators	B Sandhya Rani
	EA Siddiq
	VLN Reddy
Coordinator	A Srividya
	J Gowrishankar

Technical Officer
Technical Officer
Project Assistant

ANGRAU, Hyderabad
ANGRAU, Hyderabad
ANGRAU, Hyderabad
Director \& Staff Scientist

Objectives

1. Testing the purity of Basmati samples received from Export Inspection Council (EIC), Ministry of Commerce, Government of India, Basmati rice exporters from India, and other countries; and
2. Discovery and mapping of genomic regions governing economically important traits of Basmati rice.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)
The work undertaken in earlier years under objective 2 has been summarized in the first part of the corresponding description below.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
Objective 1: Testing the purity of Basmati samples received from Export Inspection Council (EIC), Ministry of Commerce, Govt. of India, Basmati rice exporters from India and other countries.
During the period under report, a total of 157 Basmati samples were analyzed and the number of samples indicating the percentage of adulteration with non-basmati rice is shown in Figure 1.

The protocol for DNA testing of Basmati rice was initially developed for detection of adulteration using eight Simple Sequence Repeats (SSRs)

Figure 1. Basmati samples analyzed at APEDA-CDFD Centre in the current reporting year.
marker assay with eleven notified Basmati varieties. In view of the complexities and challenges arising in adulteration testing, efforts are being made to further expand as well as fine tune the present protocol as mentioned below:

i) Updating the database of Basmati varieties

At present our method covers eleven of the twenty varieties of Basmati rice that have been notified by Department of Agriculture and Cooperation (DAC) under Seeds Act, 1966. In view of the new adulterants challenging the existing method, we have extended our method of multiplexed eight markers panel analysis for identification of all the twenty notified varieties to generate a comprehensive database.
ii) Single grain analysis for varietal identification

On the unknown rice samples, where the sample was predominantly one variety, the identification using our standardized method is in good agreement. However, identification of rice varieties in samples of complex mixtures would require the use of a single grain assay. Due to the number of complex mixtures of samples being received, we have standardized single grain analysis to find out Basmati and adulterant varieties in the sample.
iii) Increase the number of SSRs in the panel for better resolution of complex mixtures and varietal identification:

With the constant release of new rice varieties, it becomes imperative to incorporate more number of SSR markers in the present assay. The SSRs selected should be such that they are highly discriminatory between the various rice varieties. In our ongoing research for expansion of the protocol, we have identified additional such SSRs for future use.
Objective 2: Discovery and mapping of genomic regions governing economically important traits of Basmati rice.
A total of 34 Quantitative Trait Loci (QTLs) for 16 economically important traits of Basmati rice
were identified employing F_{2}, F_{3} and Recombinant Inbred Line (RIL) mapping populations derived from a cross between Basmati 370 (traditional Basmati) and Jaya (semi dwarf rice). Out of which, 12 QTLs contributing to more than 15% phenotypic variance were identified and considered as major effect QTLs. Four major effect QTLs coincide with the already known genes viz., sd1, GS3, alk1 and fgr governing plant height, grain size, alkali spreading value and aroma, respectively.
During the period under report, Basmati 370 rice DNA sequenced on SOLiD 4 was analyzed using Lifescope v2.5.1 software. Reads in xsq file format were mapped against Nipponbare complete rice genome sequence available at http://rice.plantbiology.msu.edu/. Alignment results were used to detect variations by variant caller algorithm. Based on the Basmati sequence data, candidate genes were identified for a few major QTLs namely auxin response factor for filled grains, soluble starch synthase 3 for chalkiness and $V Q$ domain containing protein for grain breadth and grain weight QTLs. These predictions were made based on non synonymous single nucleotide polymorphisms (nsSNPs) that were identified by comparing Basmati genome sequence with that of Nipponbare.

Publications

1. Archak S and Nagaraju J (2014). Computational analyses of protein coded by rice (Oryza sativa japonica) cDNA (GI: 32984786) indicate lectin like Ca2+ binding properties for Eicosapenta Peptide Repeats (EPRs). Bioinformation 10: 63-67.
2. Vemireddy LR, Satyavathi VV, Siddiq EA and Nagaraju J (2015). Review of methods for the detection and quantification of adulteration of rice: Basmati as a case study. Journal of Food Science Technology 52: 3187-3202.

Other Publications

1. Satyavathi VV (2014). International exposure to GM research. South Asia Biosafety Program Newsletter 11: 2.

शोध
 Research

LABORATORY OF BACTERIAL GENETICS

 Studies on gene regulation, transcription termination, and

 Studies on gene regulation, transcription termination, and amino acid and ion-transport in Escherichia coli

Faculty	J Gowrishankar	Director \& Staff Scientist
	Abhijit A Sardesai	Staff Scientist
R Harinarayanan	Scientist	
PhD Students	L Shanthy	Senior Research Fellow
	Amit Pathania	Senior Research Fellow (Till Dec. 2014)
		(Project-Senior Research Fellow since Jan. 2015)
	Aanisa Nazir	Senior Research Fellow
	Rajvardhan M Kapshikar	Senior Research Fellow
	Suahitra Upreti	Senior Research Fellow
	Nalini Raghunathan	Senior Research Fellow
	Rajeshree Sanyal	Junior Research Fellow
	Nida Ali	Junior Research Fellow
	Ravish Sharma	Junior Research Fellow
	J Mallikarjun	Junior Research Fellow
	Sayantan Goswami	Junior Research Fellow (Since July 2014)
	Swati Dubey	Junior Research Fellow (Since Feb. 2015)
	M Jaseem	Project-Junior Research Fellow (Since Nov. 2014)
Other Members	VK Mishra	Staff Scientist
	K Anupama	Staff Scientist
	J Krishna Leela	Technical Officer
	TS Shaffiqu	Technical Officer
	Vimala Allada	Project Associate
	P Hima Bindu	Project Associate

The Laboratory of Bacterial Genetics comprises three faculty groups engaged in research on several aspects of the physiology and genetics of Escherichia coli, and is majorly supported by the Department of Biotechnology as a Centre of Excellence in Microbial Biology. The work undertaken in this reporting year is described below under the following objectives:

Objectives

1. To understand the pathology of RNA-DNA hybrids (R-loops) and the mechanisms for their avoidance;
2. Studies on a novel cryptic pathway for potassium translocation in E. coli;
3. Studies on basic amino acid export in E. coli;
4. To understand genetic interactions between (p)ppGpp and tm-RNA (SsrA)/SmpB;
5. To delineate the role of (p)ppGpp in cell division;
6. To understand consequences of accumulation of (p)ppGpp: relative toxicity of pppGpp versus ppGpp ;
7. To use the ilvGMEDA operon as a paradigm to study the role of (p)ppGpp/DksA in transcription elongation; and
8. Role of transketolasesin E. coli physiology.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

The work undertaken in earlier years on each of the objectives has been summarized in the first parts of the corresponding descriptions below.
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

1. Pathological consequences of R-loops and the mechanisms for their avoidance in E. coli.

The R -loop is a molecule in which singlestranded (ss-) RNA invades duplex DNA to base-pair with one of the DNA strands so that
the complementary DNA strand is displaced and rendered single-stranded. This laboratory has suggested earlier that nascent transcripts of protein-coding genes are prone to forming R-loops in the negatively supercoiled DNA region upstream of the moving RNA polymerase; and that such R-loop formation is generally avoided in E. coli by two mechanisms, namely, the immediate engagement of nascent mRNA by ribosomes (that is, transcription-translation coupling) and the premature termination of nascent transcripts that are not being simultaneously translated (that is, Rho-dependent transcription termination, which is mediated by the Rho and NusG proteins). In this model, antisense transcripts would also be prone to generating R-loops in the absence of Rho-dependent termination. We have previously obtained several lines of genetic evidence to indicate that the prevalence of R-loops is increased in mutants with inefficient Rho-dependent termination. The R-loops are distributed across the genome including from antisense transcripts, and ectopic expression of an R-loop helicase (UvsW, from phage T4) rescues the lethality associated with deletion of rho or nusG genes.
R-loops have also been proposed by Kogoma to provoke initiation of DNA replication, which is distinct from that ordinarily initiated at the oriC locus of the circular E. coli chromosome by action of the essential protein DnaA. Loss of RNase HI, an enzyme that removes R-loops, can restore viability to dnaA mutants and this is believed to be because of increased constitutive stable DNA replication (cSDR) from R-loops in these strains. Several putative "oriK" loci on the E. coli chromosome for R-loop mediated replication initiation have been reported.
We are at present engaged in attempts to understand the phenomenon of DnaA- and oriCindependent cSDR in E. coli. Based on our earlier finding that R-loops are distributed genome-wide (rather than at discrete loci), we have proposed that cSDR in a clonal population of bacterial cells is characterized by a widespread distribution of origins in the genome, each with a small firing potential. Since the gene organization on the circular chromosome has evolved such as to largely maintain co-directionality of transcription of the highly transcribed genes with replication fork movement, the latter being bi-directional from oriC to the antipodal terminus region where the action of a protein Tus creates a "replication fork trap" in an interval bounded by the Tersequences
to which Tus binds), cSDR is expected to suffer replication-transcription conflicts as some forks attempt to progress towards oriC. Furthermore, the postulated replication fork dynamics in these populations will explain the occurrence in two different mutants exhibiting cSDR (rnhA and $r e c G$) of a distinct peak of gene copy numbers in the chromosomal terminus region (as identified recently by two other groups).

In the present ongoing work, we are examining (i) whether other mutants that are expected to possess increased R-loop prevalence (for example, rho and nusG mutants, or topA mutants defective for topoisomerase I) exhibit cSDR; (ii) whether other mutants that have been reported to show a peak of gene copy numbers in the chromosomal terminus region (for example, mutants defective for three 3'-ss-DNA exonucleases, or for RecD) exhibit cSDR; (iii) the nature of a novel mutation in a laboratory collection strain that suppresses lethality associated with complete loss of DnaA; and (iv) the roles if any of the homologous recombination proteins RecA, RecBCD, and RuvABC in the different examples of cSDR. We are also developing a quantitative model to relate the abundance of R-loops at specific loci to four parameters, namely (i) promoter strength for transcript synthesis, (ii) efficiency of co-transcriptional ribosome engagement on the transcript (relevant for sense but not antisense transcription), (iii) efficiency of Rho-dependent termination of the untranslated transcripts, and (iv) sequence propensity for R-loop formation. Our analysis indicates that transcript abundance may be paradoxically reduced with increased promoter strength if the transcript is R-loop prone. The predictions from this model are being tested with the publicly available datasets on the abundance of sense and antisense transcripts in E. coli, and with our own earlier data on the distribution of R-loops across the genome.

Finally, since R-loops are known to exist in eukaryotic cells and to inflict genome damage in G1 phase we have also advanced the proposal that cSDR-like events may also promote aberrant replication initiation in these cells.
2. Studies on a novel cryptic pathway for potassium translocation in E. coli.

We have been examining a physiological link between potassium (K^{+}) metabolism and the paralogous PtsP-PtsO-PtsN phosphorelay system and have previously reported that
consistent with earlier reports a strain lacking PtsN, the terminal phospho acceptor protein, was progressively rendered K^{+}sensitive (K^{s}) as the external K^{+}concentration ($\left[\mathrm{K}^{+}\right]_{\mathrm{e}}$) was raised above 20 mM in a synthetic glucose minimal medium. The pts N mutant however grew at rates comparable to the parent in a medium of low (1 mM) $\left[\mathrm{K}^{+}\right]_{\mathrm{e}}$. A growth inhibitory increase in intracellular K^{+}content, resulting from hyperactivated TrkA-G/H mediated K^{+}uptake is thought to be causal to this K^{s}. However our studies suggest that the K^{s} of the $p t s N$ mutant paradoxically results due to a K^{+}limitation occurring in media of $\left[\mathrm{K}^{+}\right]_{e}>20 \mathrm{mM}$. We have shown that the moderate K^{s} displayed by the $p t s N$ mutant was exacerbated in a derivative lacking the TrkA and Kup K^{+}uptake proteins. Furthermore, overproduction of the K^{+}uptake proteins TetA, a truncated KdpA polypeptide (KdpA'), Kup, and a K^{+}transporting variant of the ammonia transporter AmtB, AmtB ${ }^{\text {H1680/4318E, }}$, suppressed the K^{S} of the pts N mutant. Absence of the predicted inner membrane protein YcgO suppressed the K^{s} of the pts N mutant and its overproduction while rendering its parent K^{s}, also displayed an exacerbated K^{ς} phenotype in a strain lacking the Trk and Kup transporters. Similar to that seen for the pts N mutant the K^{s} of ycgO overexpression was suppressed by overproduction of Kup. Lastly we had also found that levels of $y c g O$ were comparable in the parent and its $p t s N$ derivative. Accordingly the relationship between the ptsN mutation and its $y c g O$ suppressor mutation on one hand and the K^{S} caused by YcgO overproduction on the other could be rationalized on the basis that in the parent either the phospho- or the depgosphoform of PtsN may fetter the activity of YcgO . It is thus hypothesized that K^{s} in the $p t s N$ mutant may occur due to K^{+}limitation resulting from activation of a pathway of K^{+}release mediated by YcgO that is coactivated by $\left[\mathrm{K}^{+}\right]_{e}>20 \mathrm{mM}$ and is normally rendered cryptic by phospho/ dephospho-PtsN.
In this year we performed measurements of cellular K^{+}content in the parent and the pts N mutant and found that (i) the K^{S} of the pts N mutant correlated with lowered cellular K^{+}levels in the $p t s N$ mutant in comparison to its isogenic wildtype parent that was observed during exposure to media of intermediate (40 mM) and high (115 mM) but not in media of low (1 mM) $\left[\mathrm{K}^{+}\right]_{\mathrm{e}}$, (ii) as mentioned above, the K^{s} of the pts N mutant was found to be suppressed by overproduction of

Kup, and this correlated with increased cellular K^{+}content in the pts N mutant, (iii) the absence of YcgO was associated elevated K^{+}content in the $p t s N$ mutant and correlated with the suppression of K^{S} of the $p t s N$ mutant and (iv) the K^{S} phenotype associated with overexpression of ycgO also correlated with reduced cellular K^{+}content and its suppression by overproduction of Kup was associated with increased cellular K^{+}content. These observation lend support to the notion that the growth inhibition of the pts N mutant in media of intermediate and high $\left[\mathrm{K}^{+}\right]_{e}$ is associated with a K^{+}limitation.

One aspect of the model for the K^{s} of the pts N mutant described above, postulates that in the wild type strain either the phospho or the dephospho-form of PtsN may interact with YcgO to fetter its activity. To address this issue, currently we are testing for the probable interaction of the two forms of PtsN with YcgO in vivo. For this purpose we have generated plasmids encoding hexahistidine tagged versions of PtsN and its derivative bearing the H73A amino acid substitution. The H73A substitution renders PtsN in a constitutive dephospho-state. We are currently testing for the copurification of a chromosomally encoded epitope tagged YcgO with the two hexahistidine tagged PtsN variants.

3. Studies on basic amino acid export in E. coli

Towards studies on regulation of basic amino acid export in E. coli we have previously reported characterization of the ORF yggA (argO) that encodes a novel arginine (Arg) exporter ArgO in E. coli, whose expression is regulated by the transcription factor ArgP. Towards understanding the mechanism of Arg export mediated by ArgO we have previously conducted mutagenesis and second-site suppressor studies on ArgO and have assessed its topology in the inner membrane. Furthermore we have reported the identification of $y b j E$ (lysO), a gene whose product mediates export of L-lysine (Lys) and another gene ydhE whose product appears to encode a second Arg exporter in E. coli.

Previously we had shown that the growth of the ybjE mutant was impaired in a medium containing the lysylalanyl dipeptide (Lys-Ala) which correlated with significantly elevated Lys content in the ybjE mutant in comparison to its parent. In this year, we demonstrated that overexpression of $y b j E$ from a heterologous promoter yielded increased extracellular Lys in
the culture medium, in comparison to its haploid $y b j E^{+}$(vector bearing) counterpart, following growth in a medium containing Lys-Ala. This observation is consistent with the notion that YbjE functions as a Lys exporter in E. coli. With regard to the genetic regulation of $y b j E$ we had earlier reported the location of the core promoter elements of $y b j E$ and had found that expression of a ybjE-lac transcriptional fusion was reduced two-fold in Arg supplemented minimal medium in an ArgR dependent manner whereas presence of Lys in the medium did not affect the magnitude of ybjE-lac expression. In this year we performed additional studies to delineate the basis of repression of $y b j E$ expression by ArgR. We found that ArgR displayed Arg sensitive binding to the cis regulatory region of $y b j E$ in vitro. Additional studies indicated that the binding site(s) for ArgR in the cis regulatory region of $y b j E$ represented a weak ArgR binding site(s) since ArgR bound in an Arg sensitive manner with greater avidity to the argF DNA template that is known to bear a pair of classical ArgR binding sites (ARG boxes) We generated multiple DNA templates bearing site specific deletions and nucleotide substitutions within the cis regulatory region of $y b j E$ and tested them for their interaction with purified ArgR. In addition we generated ybjE-lac transcriptional fusions bearing the aforementioned modifications in the $y b j E$ promoter region to assess the in vivo effect of ArgR on their expression. These studies indicated that ArgR may bind at two sites located between -64 to -47 and -43 to -26 with the second site lying in an overlap with a core promoter element of $y b j E$. Thus ArgR at the $y b j E$ promoter appears to exert its repressive effects by interfering with promoter binding of the RNA polymerase holoenzyme. One feature of the ArgR repression of $y b j E$ expression was that the magnitude of ybjE-lac was not elevated by the absence of ArgR during growth in minimal medium which is in contrast to that seen for genes of Arg regulon that are significantly derepressed in an argR mutant. Since ArgR displayed weak binding to the $y b j E$ promoter DNA, absence of derepression of $y b j E$ expression in an argR mutant may be rationalized on the basis that titration of ArgR by other stronger ARG boxes on the chromosome may lead to a pre-existing derepression of $y b j E$ expression. We also tested the effects of mutations in genes encoding transcription factors with known roles in Arg/ Lys metabolism, namely ArgP and LysR and we found that both ArgP and LysR exerted no
regulatory effects on $y b j E-l a c$ expression.
In E. coli, ArgO, the ortholog of the LysE basic amino acid exporter of Corynebacterium glutamicum, has so far been thought to promote export only of Arg and its capacity to mediate Lys export is so far unknown. LysE on the other hand mediates export of both Arg and Lys. In E. coli argO expression is subjected to transcriptional regulation by Arg and Lys occurring through the transcriptional regulator ArgP with Arg and Lys mediating respectively induction and repression of argO. The expression of lysE in C. glutamicum is also under the transcriptional control of LysG, which is an ortholog of ArgP. In contrast to that seen for E. coli ArgP both Arg and Lys serve to stimulate lysE expression via LysG. It seemed probable that ArgO was also capable of mediating Lys export in E. coli however its Lys export capacity was normally rendered cryptic due to repression of its expression by Lys. To address this issue we tested whether overexpression of argO could mediate export of Lys. We used an argP allele bearing a dominant mutation encoding the ArgP ${ }^{\text {P274S }}$ substitution whose expression in vivo leads to Lys insensitive argO overexpression. Expression of ArgP ${ }^{\text {P274S }}$ but not ArgP, in the wild type strain promoted syntrophic cross-feeding of a lysA auxotroph and the property of ArgP ${ }^{\text {P274S }}$ to cross-feed was absent in a strain lacking ArgO. In addition, heterologous overexpression of argO rendered an $\arg O$ ybjE double mutant resistant to the toxic analogue of Lys thialysine. These studies imply that ArgO bears a latent Lys export potential that is rendered cryptic due to Lys mediated repression of its expression by ArgP leading to perhaps a division of labour in the export of Arg an Lys in E. coli, a situation that is distinct from that seen in the case of C. glutamicum, where one protein LysE exports both Arg and Lys.
Earlier we had reported the isolation of null mutations in $y d h E$, encoding a predicted member of the multidrug and toxic compound extrusion (MATE) family of exporter proteins that rendered an argO mutant hypersensitive to the arginylalanine (Arg-Ala) dipeptide. We had initiated this work because we found that the argO mutant of E. coli was surprisingly not rendered sensitive to the Arg-Ala dipeptide. This observation is in contrast to that seen in C. glutamicum wherein a lysE mutant is rendered sensitive to both Arg-Ala and Lys-Ala dipeptides. Dipeptides provide a facile means of elevating
the cytoplasmic concentration of an amino acid following their catabolism to their constituent amino acids after their cytoplasmic uptake. The sensitivity of the lysE mutant to Arg-Ala and LysAla is compatible with the role of LysE as an exporter of Arg and Lys. The apparent resistance of an argO mutant to Arg-Ala is indicative of existence of another mechanism(s) in E. coli that mediates resistance to the potential toxic effect of elevated cytoplasmic Arg concentrations attained by uptake of an Arg-containing dipeptide. Currently we are engaged in obtaining estimates of intracellular Arg levels in the parent, and the argO and $y d h E$ single and double mutants upon their exposure to Arg-Ala.
4. Genetic interactions between (p)ppGpp and tm-RNA (SsrA)/SmpB.

In work described in earlier reports the synthetic lethal phenotype observed during the combined deficiency of (p)ppGpp and tmRNA or SsrA (synthetic lethality) was genetically characterized and the following were inferred,
a) Regulation of transcription by ppGpp alleviates the generation of non-stop mRNA by Rho-dependent transcription termination and prevents the stalling of ribosomes.
b) The ribosomes stalled in a $p p G p p^{0}$ strain require the SsrA/SmpB system for rescue, the absence of which leads to loss of cell viability.
c) Improved rate of translation in the presence of plasmid pRARE reduced the occurrence of Rho-dependent transcription termination and suppressed the synthetic lethal phenotype.
An important proof needed to support the inferences made above is to demonstrate enhanced Rho-dependent transcriptional polarity in ppGpp^{0} strain. In results described below we have used northern blotting to study polarity in the $\mathrm{ppGpp}{ }^{0}$ strain. Taking advantage of the stability of $t R N A$, northern hybridisation was done using lacZ-lacY-tRNA hybrid mRNA system wherein lacZ and lacY' genes are fused to a $t R N A$ reporter gene with the transcription under the control of lac promoter (Lopez et al., 1994). In this construct, the lacZ gene is translated from the lamB RBS which is nearly equivalent in efficiency to that of lacZ RBS and is followed by a truncated version of lac Y gene, making this construct tri-cistronic.. The tRNA used here is tRNA ${ }^{\text {Arg5 }}$, which recognizes the
rare arginine codon AGG and ranks amongst the least abundant in E. coli, therefore, its genuine expression interferes minimally with that of the reporter. An ' A ' to ' U ' substitution at the nucleotide 73 of the reporter tRNA decreases its capacity to load arginine without disrupting its structure. In addition, this allows the discrimination between the reporter and the genuine tRNA Arg5 by hybridization. As expected, we find an IPTG dependent appearance of signal and the signal is lower in the $\mathrm{ppGpp}{ }^{0}$ strain as compared to that in the WT strain (Fig. 1A). To find out if decreased tRNA expression in the (p) ppGpp ${ }^{0}$ strain arise from transcriptional polarity we used bicyclomycin an antibiotic that inhibits Rho protein and asked if expression is restored in the (p)ppGpp ${ }^{0}$. tRNA expression in the ppGpp ${ }^{0}$ strain was indistinguishable from that seen in the wild type strain which is consistent with the idea of Rho-dependent transcription termination being responsible for the decreased in tRNA Arg5 expression in the ppGpp ${ }^{0}$ strain.
We also find that plasmid pRARE which suppressed the synthetic lethal phenotype rescued transcriptional polarity seen in the ppGpp^{0} strain (Fig. 1B) consistent with an idea that increased rate of translation in the presence of plasmid pRARE inhibits Rho-mediated termination by facilitating transcription-translation coupling in the $p p G p p^{0}$ strain.

5. (p)ppGpp and modulation of cell division.

In the previous report we had documented the synthetic lethality of ppGpp^{0} Ion mutant. Our studies suggested that SulA-mediated inhibition of FtsZ could be the probable cause of lethality although we did not find evidence for increased sula expression in the (p)ppGpp ${ }^{0}$ strain.
In work carried out this year, we have gathered more evidence in support of this idea, (i) overexpression of FtsZ suppressed lethality; (ii) microscopy revealed extensive filamentation in ppGpp ${ }^{0}$ Ion strains associated with loss of cell viability; (iii) western blotting showed a reduction in FtsZ level in the ppGpp ${ }^{0}$ strain. These results indicate that (p)ppGpp levels could be important for the protection of cellular division machinery under growth conditions that stress the Lon protease machinery leading to an increase in SulA concentration. We think (p)ppGpp could be important to prevent FtsZ concentration from dropping below the threshold required for SulA inhibition and this could be mediated through the

Figure 1. Inhibition of transcriptional polarity by (p)ppGpp and its rescue by bicyclomycin and plasmid pRARE. Expression of tRNA ${ }^{\text {arg }}$ and 5 sRNA were monitored by northern blotting in the WT and ppGpp ${ }^{0}$ strainsin the presence or absence of IPTG/bicyclomycin (BCM) (A), in the ppGpp ${ }^{0}$ strain carrying plasmids pACYC184 or pRARE in the presence or absence of IPTG (B).
positive regulation of FtsZ and /or the Lon protease activity.
6. Accumulation of (p)ppGpp: relative toxicity of pppGpp versus ppGpp.
$s p o T$ is an essential gene, and genetic evidence indicate the essential function of SpoT is the degradation of (p)ppGpp. In work described previously we tested this idea by screening for mutations that allow survival of spoT deletion. Two mutations, one that truncates the relA-ORF after the $496{ }^{\text {th }}$ codon ($\Delta r e l A 496$) and another at the end of the rImD ORF that precedes the reIA ORF were identified.

In the current year, we characterized the (p)ppGpp accumulation pattern in strains bearing the $\Delta r e l A 496$ allele in spo T^{+}and $\Delta s p o T$ background and found higher ppGpp content in the $\Delta r e l A 496 \Delta s p o T$ strain (compared to $\Delta r e / A 496 s p o T^{+}$) consistent with the resistance displayed by this strain to SMG (serine, methionine and glycine). The results show that synthesis of (p)ppGpp per se is not detrimental to the growth of $\Delta s p o T$ strain. Using a system designed to deplete SpoT protein in the $\Delta s p o T$ strain we followed intracellular (p)ppGpp content in the strain during growth in the absence of starvation. We found
gradual accumulation of ppGpp but not pppGpp to accompany the reduction in growth rate. To ask if pppGpp is rapidly converted to ppGpp through GppA (guanosine penta phosphate hydrolase), we deleted gppA. Interestingly, the $\Delta s p o T$ gppA mutant was much more sensitive to SpoT depletion (relative to $\Delta s p o T$ strain) as seen from a rapid onset of growth inhibition; accumulation of pppGpp in addition to ppGpp was seen. These results indicate that the accumulation of pppGpp is toxic under these growth conditions and two proteins, namely, SpoT and GppA proteins are redundantly engaged in the removal of this molecule. We also found the viability of the $\Delta r e l A 496 \Delta s p o T$ strain was dependent on GppA, again an indication of toxicity associated with the accumulation of pppGpp.
7. Using the ilvGMEDA operon as a paradigm to study the role of (p)ppGpp/DksA in transcription elongation

The addition of amino acids serine, methionine and glycine to minimal glucose media provokes limitation for amino acids isoleucine and valine; strains capable of mounting a stringent response ($\mathrm{re} / \mathrm{A}^{+}$) or having elevated (p)ppGpp or DksA levels adapt by regulating transcription of the ilvGMEDA operon to
overcome the limitation (SMG-r); conversely $\Delta r e l A$ strains do not grow (SMG-s). The presence of a frame-shift mutation early in the ilvG ORF confers transcriptional polarity and is required for the SMG-s phenotype of $\Delta r e / A$ strain; mutations that reduce Rho activity confer SMG-r phenotype in $\Delta r e l A$ strain. These results raise the possibility that (p)ppGpp/ DksA could modulate expression of the ilv operon. Since many reports implicate (p)ppGpp /DksA in the regulation of transcription elongation, we have made transcriptional lac fusions at the ilvG and ilvM loci and will use it to study the effect of (p)ppGpp/ DksA on transcripts originating at the ilvG promoter. We plan to explore the role of (p)ppGpp/DksA in attenuation using the ilvG-lac fusion and their effects on elongation/ polarity by comparing the expression of ilvG-lac with ilvM-lac fusion. Preliminary results obtained using the fusions verify our expectation of polarity relief in rho mutant.
8. Transketolase activity regulates glycerol metabolism: Inhibition of glycerol assimilation by Ribose-5-P.

Transketolase activity provides an important link between the metabolic pathways of glycolysis and pentose phosphate shunt. It is widely conserved in life forms and catalyzes inter-conversions between
pentose phosphates and glycolytic intermediates. A genetic screen for suppression of the growth defect associated with $t k t A$ tktB double mutant in LB revealed two mutations, one that rendered the glpK expression constitutive and another that inactivated deoB. Characterizing these mutations aided in identifying the role of ribose-5-P in the inhibition of glycerol assimilation. Using lacZ fusions, we show that ribose-5-P inhibits the assimilation of glycerol by enhancing GlpR - mediated repression of the glpFKX operon. EMSA assays revealed that in the presence of ribose-5-P, dissociation of the DNA-GIpR complex is less sensitive to the inducer glycerol-3-P. In addition to inhibition of glycerol assimilation, ribose-5-P confers glycerol-3-P limitation during growth in casamino acids wherein glycerol-3-P is synthesized de novo.

Publications

1. Phulera S, Akif M, Sardesai AA and Mande SC (2014). Redox proteins of Mycobacterium tuberculosis. Journal of the Indian Institute of Science 94: 127-137.
2. Gowrishankar J (2015). End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria. PLoS Genetics 11: e1004909.

LABORATORY OF CELL CYCLE REGULATION Elucidating the role of effector proteins in $\mathbf{G 1}$ to \mathbf{S} phase progression

Faculty	Shweta Tyagi	Staff Scientist
PhD Students	Aamir Ali	Senior Research Fellow
	Zaffer Ullah Zargar	Senior Research Fellow
	Swathi Chodisetty	Senior Research Fellow
	Amit Mahendra Karole	Senior Research Fellow
	Kausika Kumar Malik	Junior Research Fellow (Since Jul. 2014)
Other Members	VN Sailaja	Technical Officer
	Priya Katiyar	Project-Junior Research Fellow
	B Sumani Bharadwaj	Project-Junior Research Fellow (Till Jan. 2015)
	Mallikharjuna Rao	Project-Junior Research Fellow (Since Oct. 2014)
	Nivedita Pandey	Project--Junior Research Fellow (Since Oct. 2014)
	SJ Yogaspoorthi	Project Assistant (Till Jul. 2014)

Objectives

1. Identification of new effector proteins involved in regulation of E2F-responsive promoters; and
2. Study of chromatin modifying proteins in cell cycle regulation.
Project 1: Identification of new effector proteins involved in regulation of E2F-responsive promoters.

One of the major roles of E2F proteins is to regulate the transition from G1 to S phase. However, how E2Fs affect passage into S phase is still poorly understood. In this project we aim to identify new effector proteins involved in regulation of E2F-responsive promoters and better understand how these effectors influence transcriptional regulation during G 1 to S phase progression.
Summary of work done until the beginning of this reporting year (upto March 31, 2014)

We cloned and expressed E2F4 deletions as GST-fusion protein. These can be utilized later to map the domain of E2F4 that associates with E2F4 interacting proteins. We also expressed E2F4 as triple-epitope-tagged fusion protein for tandem affinity purification from HeLa spinner cells.

Details of progress made in the current reporting year (April 1, 2014 -March 31, 2015)

E2F1 has been shown to associate with multiple members of HMT family either directly (Takeda et. al, Genes Dev. 2006) or indirectly (Tyagi et al., Mol Cell. 2007) to bring about the H3K4 trimethylation and activation of S phase promoters. One important observation in these studies was that E2F-responsive promoters undergo dynamic H3K4 trimethylation during the cell cycle. Until recently it was believed that H3K4me3 is an irreversible modification. But with discovery of four H3K4me3 demethylase namely RBP2, SMC-X, SMC-Y, and PLU-1 this theory changed. We wish to identify the H3K4 tri demethylase which removes the H3K4me3 residues on the E2F-responsive promoters and characterize its role in E2F-mediated transcription.
To start our study, we took the directed candidate approach. We initiated our studies with Retinoblastoma binding protein 2 (RBP2), as the antibodies to this protein were already available in the laboratory. Further a recent report suggests that RBP2 is a part of $\operatorname{Sin} 3$ core repressor complex and causes permanent silencing of a subset of E2F4 targets during muscle differentiation (van Oevelen et al., Mol. Cell. 2008). Also genome-wide location screen of

RBP2 showed that it is associated with a large number of PcG target genes in mouse ES cells. The study also showed that genome wide targets for RBP2 include a subset of genes that have role in cell cycle regulation and cell proliferation (Pasini et al., Genes Dev. 2008).

We used GST-E2F4 to check whether it interacts with RBP2. In order to ensure that the interaction was specific to E2F4 and not GST, we used GST alone for control pull down. The bead-bound GST-E2F4 or GST was incubated with HeLa cell nuclear extract and probed for

Figure 1. E2F4 interacts with RBP2.
A Pull down from GST-E2F4 and GST probed with anti RBP2 antibody shows RBP2 interacts with E2F4.
B Schematic of E2F4 deletions. DD, dimerization domain; TD, transactivation domain.
C Pull down from GST-E2F4, E2F4 deletions and GST probed with anti RBP2 antibody shows that RBP2 interacts only with full-length E2F4.
D The interaction of GST-E2F4 TD and GST with RBP2 are shown.

RBP2 after the beads were washed and used for immunoblotting. RBP2 was clearly detected in the GST-E2F4 beads but not in GST alone, indicating that the RBP2 interacted specifically with E2F4 (Fig 1A).
In order to map the region of E2F4 that interacted with RBP2, we made use of our GSTtagged E2F4 deletion (Fig 1B). These GST fusion proteins were incubated with nuclear extract as mentioned before and analyzed for RBP2 binding. Surprisingly, none of the two deletions showed any binding to RBP2 indicating that either the transactivation domain (TD) is important for this interaction or only full-length E2F4 interacts with RBP2 (Fig 1 B and 1C). To test these possibilities, we made a GST fusion of E2F4 TD and checked its interaction with RBP2 (see Fig. 1B and 1D). As shown in Fig 1D, GSTE2F4 TD was able to pull down endogenous RBP2. Interestingly, this region of E2F4 also interacts with pRB homologue, p130 raising the possibility that the E2F4-RBP2 interaction may not be direct.

Project 2: Study of chromatin modifying proteins in cell cycle regulation.

Histone 3 lysine 4 trimethylation is linked to active gene expression, but its precise role in cell cycle regulation is now being uncovered. We have shown that MLL-family of H3K4 histone methyltransferases is linked to cell cycle regulation by interacting with E2F1. In this project, we are looking at other roles of this chromatin-modifying complex that may influence cell cycle regulation.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)
To find out the role of MLL complex in cell cycle regulation, in our previous reports we show that MLL has a regulatory role during multiple phases of the cell cycle. RNAi mediated knockdown revealed that MLL regulates S phase progression and, proper segregation and cytokinesis during M phase. Using deletions and mutations, we had narrowed the cell-cycle regulatory role to the C subunit of MLL.
Details of progress made in the current reporting year (April 1, 2014 -March 31, 2015)
SET 1 family members have overlapping as well as unique functions. Our previous results show
that loss of both MLL and WRAD results in S and M phase progression defects but, while WRAD may have a role in the M phase functions of MLL, their involvement in S phase functions of MLL is not clear. Further, mutations in WDR5 show that Y191F, which is capable of interacting with MLL, rescues M but not S phase progression defect induced by loss of WDR5. WRAD components complex with other SET1 family members as well and Y191 may have a role in WDR5's interactions with other MLL members (Zhang et al., Nucleic Acids Res. 2012; Dharmarajan et al., J. Biol. Chem. 2012). In order to clarify if other SET members participated or duplicated the functions of MLL in cell cycle progression we undertook further experiments.
We used two different siRNAs to deplete Set1A, from the SET 1A/ SET 1B group; and MLL3 from the MLL3/MLL4 group. Even though, we have studied the effects of MLL from MLL/MLL2, we still choose MLL2 to confirm our findings. We also used the stratergy employed by Wang and colleagues (Wang et al., Mol. Cell. Biol. 2009) and targeted Menin, PTIP or WDR82 mRNA to substantiate our RNAi experiments with MLL/ MLL2, MLL3 and Set 1A complexes respectively.

Loss of Set1A, MLL2 and MLL3 resulted in pronounced and almost similar loss in cell proliferation as observed by failure of BrdU uptake by siRNA treated cells (Fig 2A). In agreement with these results, RNAi of Wdr82, Menin and PTIP also showed reduction in BrdU incorporation (Fig. 2B).

In contrast, when assayed for mitotic defects, only samples treated with Set1A siRNA displayed obvious phenotype, and not MLL2 or MLL3 siRNA-treated samples (Fig 2C). Similarily, knockdown of Set1A protein complex component WDR82 displayed considerable cells with mitotic defects but not Menin or PTIP (Fig 2 D). Together, our results suggest that while all MLL complexes play a role in regulating S phase progression, only MLL and SET 1A are the major protein complexes responsible for facilitating M phase progression.

Figure 2. Set1 family regulates cell growth and mitosis.
A-D. Different members of Set1 family were knocked down using siRNA and BrdU incorporation assay (A-B) and mitotic defects analyses (C-D) were done in U2OS cells as indicated. (A,C) \#1 and \#2 denote two different siRNAs used. Cont, Control; Men, Menin; Wd82, WDR82. Significant p- value (<0.01) were obtained with Student's t-Test (C-D).

Publications

1. Ali A, Veeranki S N, and Tyagi S (2014). A SET domain-independent role of WRAD
complex in cell cycle regulatory function of mixed lineage leukemia. Nucleic Acids Research 42: 7611-24.

LABORATORY OF CELL DEATH \& CELL SURVIVAL
 Functional protein networks controlling cell life and death

Faculty	Maddika Subba Reddy	Staff Scientist \& WT-DBT India Alliance Intermediate Fellow
PhD Students	Neelam Chaudhary	Senior Research Fellow
	PV Vivek Reddy	Senior Research Fellow
	G Narmadha Reddy	Senior Research Fellow
	Swapnil R Shinde	Senior Research Fellow
	Parveen Kumar	Senior Research Fellow
	Varun J Shah	Senior Research Fellow
	KM Jagrati	Junior Research Fellow
(Since Aug. 2014)		
Other Members	Naga Lakshmi K	Research Associate
	M. Prathyusha	Project-Junior Research Fellow
	KVS Rammohan Chowdary	Project- Junior Research Fellow
	Bhavya K	Project- Junior Research Fellow
	Nanci Rani	(Since Nov. 2014)
	Technical Assistant	
Collaborators	Mahendra Sonawane	TIFR, Mumbai
	Sorab Dalal	ACTREC, Mumbai
	HA Nagarajaram	CDFD, Hyderabad

Objectives

1. To dissect the functional network of phosphatases regulating cell life and death; and
2. To understand the cellular functions of canonical and non-canonical ubiquitination.
Summary of work done until the beginning of this reporting year (upto March 31, 2014)

Phosphatases play a critical role in nearly every cellular process, including metabolism, gene transcription, translation, cell-cycle progression, protein stability, signal transduction, and apoptosis. We initiated our studies on functional phosphatase network with the identification of interacting partners of every phosphatase in the cell. In this work we have already identified and characterized WWP2, PNUTS and TOPK as novel functional partners of PTEN (Maddika et al., Nature Cell Biol. 2011, Kavela et al., Cancer Res. 2013, Shinde et al., Cell Signal 2013). In addition to PTEN interactome, we also started developing networks of other cellular phosphatases. We found a deubiquitinase complex WDR48-USP12 as a regulator of another tumor suppressor phosphatase PHLPP1 (Gangula NR \& Maddika S., JBC 2013). Also, we identified PPM1G as
a molecular switch that controls differential cellular role of E3 ligase WWP2, by controlling the transition between monomeric WWP2 and WWP2/WWP1 heterodimer (Chaudhary N \& Maddika S., Mol Cell Biol 2014).
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
Project 1: Functional studies on phosphatase networks.

Currently, we are focused on actively expanding the network of all the available phosphatases in cell. So far we cloned 145 phosphatases into a triple tagged mammalian expression vector and confirmed their expression in cells. By using tandem affinity purification approach followed by LC-MS/MS analysis we identified the associated protein complexes of 142 phosphatases until now. After filtering out the common contaminants using control GFP purification and internal comparisons, we used Significance Analysis of Interactome (SAINT express) algorithm to score protein-protein interactions. By using a relatively stringent SAINT score cut off of 0.9 , we scored about 9900 high confident interactions for all the purified phosphatases. While we aim to build the whole phosphatase network, we
simultaneously started to characterize several of putative functional interactions of these purified phosphatases.

1.1. PTEN modulates EGFR endocytic trafficking

 by dephosphorylating Rab7PTEN is a major tumor suppressor that acts to down-regulate cell proliferation, survival and metabolic signaling pathways. Though it is originally identified as a dual specificity protein phosphatase, majority of its tumor suppressor function is attributed to its lipid
inositide phosphatase activity. However, several tumor derived PTEN mutants that specifically lack protein phosphatase activity has been identified highlighting the need to identify lipid phosphatase independent cellular functions of PTEN. In this study, we discovered a novel functional role of PTEN in regulating endocytosis. We demonstrated that PTEN attenuates EGFR signaling by promoting late endosome maturation by virtue of its protein phosphatase activity. Loss of PTEN impairs the transition of EGF/EGFR to late endosomes (Fig. 1A) thus leading to their

Figure 1. PTEN modulates EGFR endocytic trafficking by dephosphorylating Rab7 (A) The presence of EGF in late endosomes was analysed by co-staining with CD63 antibodies and the extent of their co-localization in control and PTEN shRNA cells was plotted ($n=100$ cells for each time point), ${ }^{*} P<0.05$. (B) The presence of EGF in early endosomes was analysed by co-staining with EEA1 antibodies. (C) Schematic representation of a model to show the role of PTEN in controlling Rab7 activation at late endosomes
accumulation in early endosomes (Fig. 1B). Interestingly, expression of wild type PTEN, but not catalytically inactive C124S and Y138F mutants could rescue the EGFR degradation in PTEN null MDA-MB-468 breast cancer cells, thus underlining the importance of PTEN protein phosphatase activity in this process. Tandem affinity purification followed by mass spectrometry analysis enabled us to identify Rab7 as a PTEN-interacting protein. Rab7, a member of the Ras superfamily of GTPases, is critical for the transit of early endosomes to late endosomes and the transfer of cargo from late endosomes to lysosomes and thus regulates the lysosome-mediated degradation of activated EGF receptors. We found that PTEN dephosphorylates Rab7 on two conserved
residues S72 and Y183. In conclusion, we identified that PTEN dephosphorylates Rab7, which is critical for its association with its GDI and subsequent delivery to endosomal membranes for activation by Mon1a-CcZ1 GEF complex, which in turn is required for late endosome maturation (Fig. 1C).

1.2. PPM1G controls α-Catenin at cellular junctions

PPM1G also known as PP2Cy is a $\mathrm{Mg}^{2+} /$ Mn^{2+} dependent nuclear serine/threonine phosphatase that plays an important role in different functions such as nucleosome assembly, cell survival control, mRNA splicing and DNA damage response. During our mass spectrometry analysis, we found α-Catenin as a

Figure 2. PPM1G controls α-Catenin at cellular junctions (A) Immunoprecipitation of α-Catenin was performed and PPM1G interaction was detected. (B) Effect of PPM1G and α-Catenin on cell migration was assayed by transwell migration assay (C) Localization of $\alpha-C a t e n i n$ in presence and absence of PPM1G was detected by immunofluorescence.
newly associated protein of PPM1G. α-Catenin is a very well studied cell adhesion protein that in concert with β-Catenin and E-Cadherin plays a critical role in linking actin cytoskeletion at the cell junctions. We confirmed the association of PPM1G and α-Catenin in cells (Fig. 2A). In our functional experiments we found that expression of PPM1G, similar to α-Catenin, strongly suppressed the cell migration in invasive breast epithelial cells (MDA-MB-231 cell line) (Fig. 2B). PPM1G is crucial for α-Catenin function at the cell membrane as depletion of PPM1G significantly inhibited the localization of α-Catenin at the cell membrane (Fig. 2C). Our deletion mapping analysis suggested that α-Catenin binds to acidic rich region of PPM1G. The acidic rich region was designated as a substrate-binding domain of PPM1G. Thus, we next tested if a-Catenin is a bonafide substrate of PPM1G. We found that active PPM1G readily dephosphorylates α-Catenin at serine 641 residue. Since α-Catenin plays a critical role in cell junction stability and actin-cytoskeleton dynamics, we are currently hypothesizing that PPM1G interaction with a-Catenin might be important for maintaining proper cell adhesion and preventing cellular migration.

Project 2: Roles of canonical and noncanonical ubiquitination in cells.

Ubiquitination is an ATP-dependent, highly ordered multistep enzymatic process, which results in covalent attachment of ubiquitin to the substrate. Ubiquitin linked to the substrates serves as a molecular tag that marks proteins for either degradation by proteasome dependent pathway or to function in wide variety of processes in a proteasome independent manner. In this project we are interested in studying both the canonical and non-canonical functions of ubiquitination in cells.

2.1. WWP2 ubiquitinates DvI2 via k63 linkage

WWP2 is an oncogene that we earlier identified as an E3 ligase that degrades its substrates such as PTEN (Maddika et al., Nature Cell Biol. 2011) and p73 (Chaudhary N \& Maddika S., Mol Cell

Biol 2014) by transferring k48 ubiquitin linkages. In our quest for additional functional cellular substrates of WWP2, we found Dvl2 as its novel interacting protein. Dvl2 is an important player in the transduction of Wnt signaling pathway. We found that WWP2 ubiquitinates Dvl2 but interestingly does not lead to its degradation. By using various ubiquitin K-R mutants, we demonstrated that WWP2 ubiquitinates DVL2 via k63 linkage.

2.2. HACE1 mediated K27 ubiquitin linkage leads to YB-1 protein secretion

While the importance of ubiquitination in controlling the fate and the intracellular functions of various proteins was widely studied, its role in extracellular protein secretion has been unexplored so far. While studying the role of ubiquitination in extracellular protein secretion, we used YB-1 as a model protein and identified the indispensable role of ubiquitination in this process. Importantly, we discovered HACE1 as YB-1 interacting E3 ligase that has the ability to generate functional K27 linked noncanonical ubiquitin linkages on its substrate. K27 ubiquitin linkages on YB-1 are necessary for its interaction with Tumor Susceptibility Gene 101 (TSG101), a component of the Multi Vesicular Body (MVB) pathway, which facilitates its secretion. Intriguingly, the secreted YB-1 unlike intracellular YB-1 displayed a strong EMT suppressor function. In summary, we identified a novel functional role for non-canonical ubiquitin linkages in mediating protein secretion.

Publications

1. Chaudhary N and Maddika S (2014). WWP2WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and $\Delta N p 73$ levels. Molecular and Cellular Biology 34: 3754-3764.
2. Jangamreddy JR, Panigrahi S, Lotfi K, Yadav M, Maddika S, Tripathi AK, Sanyal S and Łos MJ (2014). Mapping of apoptin-interaction with BCR-ABL1, and development of apoptin-based targeted therapy. Oncotarget 5: 7198-7211.

LABORATORY OF CELL SIGNALLING

Investigating the role of inositol pyrophosphates in eukaryotic cell physiology

Faculty	Rashna Bhandari	Staff Scientist \& WT-DBT India Alliance Senior Fellow
PhD Students	Swarna Gowri Thota	Senior Research Fellow
	Rathan Singh Jadav	Senior Research Fellow
	CVL Manasa	Senior Research Fellow
	Aushaq Bashir Malla	Senior Research Fellow
	Sitalakshmi Thampatty R	Senior Research Fellow
	Shubhra Ganguli	Junior Research Fellow (Since Jul. 2014)
	Akruti Shah	Junior Research Fellow (Since Feb. 2015)
Other Members	L Padmavathi	Scientist
	Ruth Manorama Ravoori	Technical Assistant
	CP Unnikannan	Project-Senior Research Fellow (Till Nov. 2014)
	Rahul Gopalam	Project-Junior Research Fellow (Till Jul. 2014)
	Susiharan G Srinivasan	Project Fellow (Since Mar. 2015)
	Vani Singh	Project Fellow (Since Feb. 2015)
Collaborators	Nagaraj Balasubramanian	IISER, Pune
	Roop Mallik	TIFR, Mumbai
	Kana M. Sureshan	IISER, Thiruvananthapuram
	HA Nagarajaram	CDFD, Hyderabad

Objectives

Inositol pyrophosphates are derivatives of inositol that contain pyrophosphate or diphosphate moieties in addition to monophosphates. They include diphosphoinositol pentakisphosphate ($\mathrm{PP}-\mathrm{IP}_{5}$, or IP_{7}) and bis-diphosphoinositol tetrakisphosphate $\left([P P]_{2}-\mathrm{IP}_{4}\right.$ or $\left.\mathrm{IP}_{8}\right)$, which participateindiversebiologicalfunctions, including DNA recombination, vesicular trafficking, rRNA transcription and osmotic regulation. The beta phosphate group of inositol pyrophosphates can be transferred to pre-phosphorylated serine residues on proteins to form pyrophosphoserine. Pyrophosphorylation occurs on several proteins within the cell, including proteins involved in ribosome biogenesis, vesicular trafficking and glycolysis. 5PP-IP 5 (5-IP $\left.{ }_{7}\right)$ is synthesised from
inositol hexakisphosphate (IP_{6}) and ATP by $I P_{6}$ kinases. Mammals have three isoforms of IP ${ }_{6}$ kinase, IP6K1, IP6K2 and IP6K3, whereas Saccharomyces cerevisiae have a single $I P_{6}$ kinase, Kcs1.

Our aim is to understand the molecular mechanisms by which various cellularphenomena are regulated by inositol pyrophosphates. We utilise S. cerevisiae, mammalian cell lines, and knockout mouse strains as model systems to investigate the signalling and metabolic pathways that are altered when inositol pyrophosphate levels are perturbed. In particular, we focus on the following objectives:

1. Understand the molecular details of protein pyrophosphorylation by inositol pyrophosphates;
2. Investigate the cellular functions of mammalian inositol hexakisphosphate kinase 1 (IP6K1); and
3. Study the role of inositol pyrophosphates and IP6 kinases in whole animal physiology.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

We observed that S. cerevisiae strains lacking Kcs1 display slow growth, increased sensitivity to translation inhibitors, decreased protein synthesis and reduced ribosome levels compared with wild type yeast. These phenotypes can be reversed upon the expression of enzymatically active Kcs1, but not the inactive form, indicating that these effects can be attributed to the loss of inositol pyrophosphates. The rate of rRNA synthesis, the first step of ribosome biogenesis, is decreased in $k \operatorname{cs1} 1 \Delta$ yeast. We determined that the enzyme responsible for rRNA synthesis, RNA polymerase I (Pol I), is pyrophosphorylated by IP_{7} on serine residues falling within mobile regions on the surface of the enzyme. There is no difference in Pol I occupancy on rDNA, but the rate of transcription elongation by Pol I is reduced in $k \operatorname{cs1} 1 \Delta$ yeast. It is possible that IP_{7} acts as a metabolic messenger, transducing changes in intracellular ATP to regulate ribosome biogenesis and energy consumption. This work has now been completed and was published in the current reporting year.
To understand the cellular functions of $I P_{7}$ in mammals, we use mouse embryonic fibroblasts (MEFs) derived from lp6k1 knockout (Ip6k1-1) embryos, which have 70% reduced levels of IP_{7} compared with wild type ($\operatorname{lp} 6 k 1^{+/+}$) MEFs. These cells provide an excellent model to study specific cellular functions of inositol pyrophosphates that may be biochemically linked with protein pyrophosphorylation. In an earlier publication (Jadav et al., J. Biol. Chem. 2013), we described a role for inositol pyrophosphates synthesised by IP6K1 in homologous recombination (HR) mediated repair of DNA double strand breaks in mammalian cells. Subsequent experiments revealed that HR repair is stalled after strand invasion, but prior to the formation of Holliday junctions in cells with reduced IP_{7}. We are currently attempting to identify the exact molecular targets of $I P_{7}$ in the regulation of HR .
To study the role of inositol pyrophosphates in whole animals, we have established a colony of lp $6 \mathrm{kl}^{1+/}$ heterozygous mice and are breeding them
to obtain wild type and knockout litter-mates. Using these mice as a model system, we identified a role for IP6K1 in maintaining in vivo haemostasis by influencing platelet polyphosphate levels. Low platelet polyphosphate levels in $1 p 6 \mathrm{k} 1^{-1-}$ mice lead to lengthened clotting time, altered clot architecture, and protection against pulmonary thromboembolism. This project was completed and published in the previous reporting year (Ghosh et al., Blood, 2013).

We previously reported the preliminary results of our investigation into the cause of male infertility in Ip6k1 knockout mice. Flow cytometry analysis of germ cells isolated from seminiferous tubules of $I p 6 k 1^{+/+}$and $I p 6 \mathrm{k} 1^{-/-}$mice revealed that the loss of IP6K1 does not affect meiosis, and that round spermatids are generated in these mice. However, elongated spermatids that arise from round spermatids by the process of spermiogenesis are reduced in number, have misshapen heads, and absent or bent tails.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

Project 1: Inositol pyrophosphates regulate stability of the oncoprotein c-Myc.

This is a new activity, wherein our goal is to understand how pyrophosphorylation can alter a protein's function. We began by examining the oncoprotein c-Myc (Fig. 1A, B) which contains a PEST domain, a hallmark of short-lived proteins, the deletion of which leads to an increase in the half life of c-Myc. This domain contains acidic serine sequence motifs that may be pyrophosphorylated by IP_{7} (Fig. 1B). We overexpressed mouse c-Myc in HEK293T cells, incubated the immunoprecipitated protein with radiolabelled IP_{7}, and noted that c-Myc is indeed pyrophosphorylated by IP_{7} (Fig. 1C). We observed that lp6k1-1 MEFs and mice have higher steady state c-Myc levels compared with their wild type counterparts (Fig. 1D), which we attributed to the greater stability of c-Myc protein in these cells (Fig. 1E, F). c-Myc present in wild type MEFs has a higher level of ubiquitylation compared with c-Myc from Ip6k1-1 MEFs (Fig. 1G), suggesting that reduced ubiquitylation triggered degradation is the basis for the longer half life of c-Myc in the absence of IP6K1. We are currently mapping the exact site(s) of pyrophosphorylation on the c-Myc PEST domain to probe the molecular mechanism by which pyrophosphorylation regulates c-Myc ubiquitylation and stability.

Figure 1. IP6K1 regulates the stability of c-Myc. (A) Schematic representation of the domain architecture of c-Myc. (B) The sequence of human c-Myc highlighting the PEST sequence (underlined) which contains acidic serine sequence motifs that are predicted to be phosphorylated by CK2 and pyrophosphorylated by IP_{7}. (C) Full length mouse c-Myc was C-terminally tagged with a V5 epitope, expressed in HEK293T cells, immunoprecipitated, and subjected to phosphorylation using radiolabelled $I P_{7}(D)$ c-Myc levels in MEFs or spleen from $\operatorname{lp} 6 k 1^{1 /+}$ or $I p 6 k 1^{1 /}$ mice were detected by western blotting and normalised to the levels of GAPDH in the lysates. The fold change (mean \pm S.E.M.) in c-Myc levels in the knockout cells/tissue compared with wild type is indicated. (E,F) MEFs of the indicated genotypes were pulse-labelled with an $\left[{ }^{35}\right.$ S]Cys-Met mixture for 60 min in Cys-Met free DMEM, and chased with excess unlabelled Cys and Met for the indicated time. Endogenous c-Myc was immunoprecipitated, resolved by SDS-PAGE, and transferred to a PVDF membrane. Radiolabelled c-Myc was detected by autoradiography (E), quantified by densitometry analysis, and expressed as a relative percentage of the amount of c-Myc protein at the zero time point (F). Data are representative of two independent experiments. (G) Endogenous c-Myc was immunoprecipitated from Ip6k1+/ and Ip6k1\% MEFs treated with the proteosome inhibitor MG132. Western blotting was conducted with an antibody to detect poly-ubiquitylation of the immunoprecipiated c-Myc, followed by reprobing the blot with a c-Myc antibody

Project 2: Cellular functions of mammalian inositol hexakisphosphate kinase 1 (IP6K1): Role of inositol pyrophosphates in vesicular trafficking.

This is a new activity, which aims to understand the role of inositol pyrophosphates in vesicular trafficking. We monitored the endocytosis and recycling of fluorescently labelled transferrin in lp6k1+/+ and lp6k1-/ MEFs. A short pulse with labelled transferrin followed by a chase
with unlabelled transferrin revealed enhanced accumulation and slower recycling of transferrin in $\operatorname{lp} 6 k 1^{1 /}$ MEFs (data not shown). After labelling for 1 h , endocytosed transferrin was observed to occupy a perinuclear compartment in Ip $6 \mathrm{k} 1^{+/+}$MEFs whereas Ip $6 \mathrm{k} 1^{1 /}$ MEFs exhibited a peripheral staining, suggesting that trafficking to the perinuclear compartment is slower in lp6k1-- MEFs (Fig. 2A). In addition, the colocalisation of transferrin with the early endosome marker

EEA1 increased in $1 p 6 k 1^{-1}$ MEFs, implying that transferrin is retained in the early endosomes (Fig. 2A, B). Overexpression of a catalytically active form of IP6K1 in the Ip6 $\mathrm{k}^{-/}$MEFs reverted this phenotype, whereas expression of inactive IP6K1 had no effect, indicating the requirement of inositol pyrophosphates for normal transferrin
trafficking in a cell. When stained with the cisGolgi marker GM130, Ip6k1~ MEFs exhibited a fragmented Golgi morphology as opposed to a perinuclear arc-like structure observed in $1 \mathrm{l} 6 \mathrm{k} 1^{1+/}$ MEFs (Fig. 2C, D). Expression of catalytically active but not inactive IP6K1 was able to rescue the Golgi fragmentation phenotype suggesting

Figure 2. IP6K1 in vesicular trafficking. (A) The indicated cell lines were pulsed labelled with Alexa Fluor 488 labelled transferrin (green) for 1 h and immunostained with an antibody directed against the early endosome marker, EEA1 (red). Scale bars represent $5 \mu \mathrm{~m}$. (B) Percentage colocalisation of transferrin with EEA1 positive structures in (A). Box and whiskers plot indicate the median, the interquartile range (box) and the 10th and 90th percentile (whiskers). The circles indicate the outliers. $n=80$ for $I p 6 k 1^{+/+}$and $I p 6 k 1^{1 /}$ MEFs and $n=40$ for $I p 6 k 1^{1 /}$ MEFs overexpressing catalytically active or inactive forms of IP6K1. Data are representative of two independent experiments. (C) MEFs of the indicated genotypes were stained to detect GM130, a cis-Golgi marker. (D) Percentage of cells with intact Golgi morphology in (C) was scored by visual examination in the indicated cell lines. Data (mean \pm S.E.M. $n=150$ cells) are representative of three independent experiments. (E) Peritoneal macrophages derived from $I p 6 k 1^{+/+}$and $I p 6 k 1^{1 /}$ mice were pulsed with 750 nm latex beads for 1 h and incubated in serum containing medium for an additional hour. DIC images were taken to assess the localisation of beads. (F) Graph showing distance moved by cholera toxin B containing vesicles in the indicated cell lines analysed by Image J. Data (mean \pm S.E.M. $n=100$ vesicles) are representative of three independent experiments. P values are from an unpaired two-tailed student's t-test (***, $p \leq 0.001$).
that IP_{7} is required for Golgi architecture maintenance (Fig. 2C, D).

Golgi fragmentation and decreased transferrin trafficking are characteristic phenotypes of cells with defective function of the motor protein dynein, which enables transport of vesicles from the cell periphery towards the nucleus. To examine dynein-driven vesicle motility, we monitored the trafficking of phagocytosed latex beads in mouse macrophages. 1 h post-internalisation, the beads were observed in the perinuclear region which corresponds to late phagosomes/ phagolysosomes in $1 p 6 \mathrm{k} 1^{+/+}$macrophages, whereas in the $106 k 1^{1}$ macrophages a larger fraction of the beads were still away from the nucleus (Fig. 2E). To monitor vesicle motility in real time, we tracked the movement of cholera toxin B containing vesicles in $1 p 6 \mathrm{k} 1^{+/+}$and $/ p 6 \mathrm{k} 1$ ${ }^{-}$MEFs. We observe that the rate of vesicle transport is significantly lower in $106 \mathrm{kn}^{-1}$ compared with $/ p 6 \mathrm{k} 1^{+/+} \mathrm{MEFs}$, and that this phenomenon is IP_{7} dependent (Fig. 2F).
The data presented here reveal a novel role for inositol pyrophosphates in dynein-driven trafficking. To understand the mechanistic link between inositol pyrophosphates and the dynein complex, we will focus on the specific subunit(s) of dynein and its interactors that could be regulated by IP_{7}-mediated pyrophosphorylation, and test the relevance of this modification in altering dynein function.

Project 3: Physiological role of IP_{7} in mice: Regulation of spermatogenesis by IP6K1.
To investigate the cause of infertility in male lp6k1-/ mice, we dissected and compared the testes and epididymides of adult (2 month old) $1 p 6 \mathrm{k}^{+/++}$and $106 \mathrm{k} 1^{-/}$male mice. Testes and epididymides are smaller in $1 p 6 \mathrm{k} 1^{1 /}$ mice compared to their $1 p 6 k 1^{+/+}$littermates, but do not show any gross morphological defects (Fig. 3A). Immunohistochemical examination of epididymides with MVH (mouse vasa homologue, a marker for round spermatids) revealed mostly MVH-positive round spermatids in the epididymal lumen with only a few degenerating sperm in $1 p 6 \mathrm{k} 1^{1 /}$ mice compared to $1 \mathrm{p} 6 \mathrm{k} 1^{1+/}$ mice whose epididymides were completely occupied with mature MVH-negative spermatozoa (Fig. 3B). In contrast to the numerous mature spermatozoa found in the epididymides of $/ p 6 \mathrm{k} 1^{+/+}$mice, $I p 6 \mathrm{k} 1^{-}$ ${ }^{-}$epididymides exhibited a dramatic decrease in the sperm count (Fig. 3C). These results clearly demonstrate that male infertility associated with loss of IP6K1 is primarily due to azoospermia,
i.e., the absence of mature spermatozoa.

To determine the exact stage at which spermatogenesis is affected in Ip6k1/ mice, we examined the first wave of spermatogenesis by conducting histological examination of postpartum testes of 24,34 and 60 day old mice (Fig. 3D). At 24 days postpartum (dpp), spermatogonia (Sg), meiotic spermatocytes (pachytene, PS and diplotene, DS) and round spermatids (rS) were observed in the testes of lp6k1+/ mice, but Ip6k1- testes contained only pachytene and diplotene spermatocytes and no round spermatids, indicating a delay in the completion of meiosis (Fig. 3D, 24dpp). At the end of the first postnatal spermatogenic cycle, which is completed in 34 days, elongated spermatids (eS) were observed in all the seminiferous tubules of $\mathrm{lp} 6 \mathrm{k} 1^{+/+}$mice, but $\mathrm{Ip} 6 \mathrm{k} 1^{1-}$ mice contained only round spermatids as the most advanced postmeiotic germ cells, suggesting a major defect in spermatid differentiation (Fig. 3D, 34dpp). Although 2 month old adult $/ \mathrm{p} 6 \mathrm{k} 1^{1 /+}$ testes contained fully mature ready-to-release sperm (Sp), Ip6k1\% testes of the same age exhibited only elongating spermatids and lacked fully condensed sperm (Fig. 3D, 60dpp).
To assess the time course of IP6K1 expression during germ cell development, we examined the expression of IP6K1 by western blotting in $1 p 6 k 1^{+/+}$mice using testes from 14, 18, 28 and 34dpp, and 75 day old adult mice. IP6K1 is detected in 14 dpp testes and its expression continues through to 34 dpp and adult testes (Fig. 3E). Immunofluorescence staining of 28dpp juvenile testes from $1 p 6 \mathrm{k} 1^{1+/}$ and $\mathrm{Ip} 6 \mathrm{k} 1^{-}$ - mice revealed that lp6k1 is expressed in the cytoplasm of round spermatids and pachytene spermatocytes with perinuclear localization (Fig. 3F). IP6K1 shows higher expression in late pachytene and diplotene spermatocytes and round spermatids compared to early pachytene cells (Fig. 3F). In contrast, IP6K1 was absent from spermatogonia, preleptotene and leptotene spermatocytes. These data clearly establish that IP6K1 is expressed only in meiotic and post meiotic germ cells with expression being higher in post meiotic round spermatids. The correlation of spermatogenic defects exhibited by lp $6 \mathrm{k} 1-$ ${ }^{1}$ testes and the expression pattern of IP6K1 during germ cell development suggests an important role for IP6K1 in mammalian spermatid differentiation. We are currently conducting analyses to determine the exact stage(s) of spermatid differentiation that are dependent on IP6K1.

Figure 3. Loss of IP6K1 causes azoospermia in mice. (A) $/ \mathrm{p} 6 \mathrm{k} 1^{1 /}$ mice display smaller testes and epididymides compared to $\mathrm{I} 66 \mathrm{k} 1^{+/+}$mice. (B) Immunofluorescence visualisation of the round spermatid marker mouse homologue of vasa (MVH, green), and nuclei staining with DAPI (blue), in epididymal sections of $I p 6 k^{++/}$and $I p 6 k 1^{-1-}$ mice. Cell types marked are mature spermatozoa (Sz) and degenerating round cells (Rc). (C) Cell count of epididymal spermatozoa of $l p 6 k 1^{1^{+/+}}$and $I p 6 k 1^{1 /-}$ mice (age 10 to 12 weeks). Average sperm count per pair of $I p 6 k 1^{+/+}$epididymides is 27 million, which is reduced to 1 million in $1 \mathrm{p} 6 \mathrm{k}^{-1-}$ mice $(\mathrm{n}=4)$. Data points are values for individual mice. The horizontal line is the group mean \pm S.E.M. (***P < 0.0001; unpaired Student's t test). (D) Haematoxylin and eosin stained testes cross sections of 24,34 and 60 days postpartum (dpp) $/ p 6 k 1^{+/+}$and $/ p 6 k 1^{1-}$ mice. Cell types marked are: spermatogonia (Sg), pachytene spermatocytes (PS), diplotene spermatocytes (DS), round spermatids (rS), elongated spermatids (eS), and fully condensed elongated spermatids ready for release (Sp). (E) IP6K1 expression in juvenile $\mathrm{Ip} 6 \mathrm{k} 1^{+/+}$and adult $\mathrm{Ip} 6 \mathrm{k} 1^{+/+}$ and $I p 6 k 1^{-/}$testes. Total testis lysates from $14 \mathrm{dpp}, 18 \mathrm{dpp}, 28 \mathrm{dpp}, 34 \mathrm{dpp} \mathrm{Ip} 6 \mathrm{k} 1^{+/+}$and adult (75 dpp) $\mathrm{Ip} 6 \mathrm{k} 1^{+/+}$and $\mathrm{Ip} 6 \mathrm{k} 1^{-/}$ mice were immunoblotted with an anti-IP6K1 antibody, with alpha tubulin as a loading control. (F) Immunofluorescence localization of IP6K1 in 28dpp testis cross sections of $l p 6 \mathrm{k}^{+/++}$and $I \mathrm{p} 6 \mathrm{k} 1^{-/}$mice. Cell types marked are: early pachytene spermatocytes (ePS), late pachytene spermatocytes (IPS), diplotene spermatocytes (DS), and round spermatids (rS). Scale bar $=50 \mu \mathrm{~m}$.

Publications

1. Thota SG, Unnikannan CP, Thampatty SR, Manorama R and Bhandari R (2015). Inositol pyrophosphates regulate RNA
polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae. Biochemical Journal 466: 105-114.

LABORATORY OF CHROMATIN BIOLOGY AND EPIGENETICS
 Understanding functions of Sirtuin family deacetylases in eukaryotic cell physiology

Faculty	Devyani Haldar
PhD Students	Lahari Konada Raghavendra Vadla Amrita Sengupta Shalini Aricthota Mayank Singh Chauhan
Other Members	Nirupama Chatterjee Ananga Ghosh
Collaborators	Manojit Pal Srinivas Oruganti Shekhar Mande

Objectives

1. Understanding the molecular functions of Sirtuin family NAD+ dependent histone/ protein deacetylases;
2. A yeast based screen for discovery of novel Sirtuin inhibitors as anti-cancer agents.

Project 1: Understanding the molecular functions of Sirtuin family NAD+ dependent histone/protein deacetylases.
Reversible acetylation/deacetylation of proteins regulates numerous important cellular processes. The Sirtuin family of protein/histone deacetylases (HDAC) are conserved enzymes that require NAD+ to deacetylate proteins. Sirtuins carry out a broad range of crucial cellular functions ranging from transcriptional silencing to DNA damage response, cell cycle regulation, metabolism and aging etc. We use yeast as well as mammalian cells in culture as models to decipher novel physiological functions of Sirtuins. Yeast genetics is a powerful tool which has been instrumental in discovering many novel genes and characterizing their functions in cellular signalling pathways. Since Sirtuins are conserved from yeast to mammals, we use fission yeast S.pombe as model systems to understand and elucidate the molecular functions Sirtuins. Fission yeast S. pombe has three Sirtuins, Sir2, Hst2 and Hst4. Deletion analysis and other studies have shown that all these genes function in transcriptional silencing. However, deletion of only hst4+ gene, not sir2+ and hst2+ genes, show interesting phenotypes of slow growth,

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow
(Since Jul. 2014)
Technical Officer
Project-Junior Research Fellow
(Till Jan. 2015)
DRILS, Hyderabad
DRILS, Hyderabad
NCCS, Pune

elongated morphology, fragmented DNA and DNA damage sensitivity indicating it could have additional functions. These phenotypes are very useful tools to uncover novel signalling pathways where Hst4 could be functioning.
Project 2: To decipher novel functions of sirtuin family NAD+ dependent histone deacetylase Hst4 of fission yeast.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)
We had previously reported that fission yeast S. Pombe strains lacking sirtuin hst4+, acetylation of its substrate histone H 3 lysine 56 increases and S phase is prolonged. To decipher novel functions of Hst4, a slow growth and DNA damage sensitivity phenotype suppressor screen was carried out. Among the suppressor genes identified by this screen,were a few genes encoding proteins involved in DNA replication. One among these is an accessory factor of DNA polymerase alpha. These genetic interactions indicated that Hst4 may be involved in regulation of DNA replication. To decipher the function of Hst4 in DNA replication, we are studying interaction of Hst4 with suppressor sup1 by determining the mechanisms of suppression. The phenotypes of hst 4Δ mutants are mainly attributed to increased H3K56Ac levels. We have observed that the H3K56ac levels remain unchanged on over expression of the suppressor gene indicating that the suppressor does not simply reduce H3K56ac levels by recruiting another deacetylase.We have earlier shown that the phenotypes of the

H3K56R and H3K56Q mutants which mimic constitutive deacetylated and acetylated states respectively are similar to hst 4 Δ mutants. Sup expression could not suppress the phenotypes of these mutants. These results indicate that the H3K56ac is required for phenotype suppression.
The phenotypes of hst 4Δ mutants such as slow growth, elongated morphology and sensitivity to DNA damaging agents similar to that of Sup Δ mutants. To test whether Hst and sup interact epistatically or exhibit synthetic lethality, the individual hst 4Δ mutant and sup 1 Δ were crossed to generate a double mutant. The double deletion mutants were viable and showed growth rate and MMS sensitivity similar to that of hst 4 Δ mutants. These results show that sup might act in the same pathway downstream of Hst. Since the suppressor functions in DNA replication, we are planning to investigate potential function of Hst in DNA replication.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
i) S-phase delay of hst deletion mutants is partially rescued by over-expression of moll:
Hst functions in cell cycle progression and DNA damage response by directly deacetylating H3K56.Hst4 deletion mutants show delayed S-phase. The delay in S-phase might be due to elevated and persistent levels of H3K56 acetylation resulting in firing of dormant origins. So, to test whether sup is able to recover the S-phase delay of hst deletion mutants, strains bearing cdc25-22 mutation which arrests cells at G2 phase of cell cycle were used for synchronization. The wild type cdc25-22 and Cdc25-22:: hst Δ temperature-sensitive cells transformed with either hst4 or Sup were arrested in G 2 at $36^{\circ} \mathrm{C} 4 \mathrm{~h}$ and then released at $25^{\circ} \mathrm{C}$ for 4 hours and samples were collected for every 30 minutes. Cells were monitored for

Figure 1. The S-phase delay of hst 4 4 mutants recovered by sup over expression. Cell-cycle progression analysis of cells synchronized at G 2 and released at indicated time points. Wild type and hst 4Δ mutant strains withcdc $25-22$ mutation and with empty vector and vector expressing hst 4 and sup 1 genes as indicated were grown at $25^{\circ} \mathrm{C}$,then shifted to $36^{\circ} \mathrm{C}$ for 4 hoo synchronize at the G2 phase of cell cycle. To release from G 2 they were shifted to $25^{\circ} \mathrm{C}$, and cells were collected every 30 min . The flow cytometry profile of asynchronous cells and cells released at indicated times points after G2 arrest is presented above.
progression through the cell cycle using flow cytometry. The FACS data (Fig. 1) indicates that on overexpression of sup1, progression of S-phase is faster than hst4 deletion mutants; however the rate of S-phase progression is slow compared to WT. The results suggest sup1 over expression partially rescues the S-phase delay of hst4 deletion mutants. This partial recovery might be due to hyperacetylated chromatin which may impede replication process.
ii) A yeast based screen for discovery of novel Sirtuin inhibitors asanti-cancer agents:

Epigenetic therapeutics of cancer such as inhibitors of DNAmethyl transferases and histone deacetylases (class I and classll) are already being used in combination with the standard cytotoxics with encouraging results. The Sirtuins (class III NAD-dependent deacetylases) are being considered as important targets for cancer therapeutics as they are up-regulated in many cancers. Inhibition of sirtuins allows reexpression of silenced tumor suppressor genes, leading to reduced growth of cancer cells. However, no sirtuin inhibitors have entered into the clinic yet as an anticancer agent. We would like to identify novel small molecule inhibitors of Sirtuins and characterize their potential as anticancer agents using budding yeast, S. cerevisiae as model system for compound screening.
Summary of work done until the beginning of this reporting year (upto March 31, 2014)

For screening of compounds with Sirtuin inhibitory activity, we have used a yeast (S. cerevisiae) strains having the URA3 reporter gene integrated at the silent telomeric locus (Tel::URA3 strain). A reporter silencing assay is based on the ability of yeast Sir2 to keep the URA3 gene silent at telomeric locus and its inhibitor makes it active. The yeast strain which express URA3 will not grow in presence of 5'-fluoroorotic acid (FOA).We have performed the assay and monitored growth of these strains in liquid medium in 96 well plates, without and with FOA. A known Sirtuin inhibitor splitomycin was used as a reference compound. Totally 361 compounds of different chemical classes were explored by following rational drug design and unbiased approaches and subsequently synthesized. These were tested for their activity inhibition using this yeast cell based URA3 reporter silencing assay. Several
hit compounds were identified. The identified hit compounds were tested for their ability to inhibit NAD-dependent HDAC activity of recombinant human Sirtuins, hSIRT1 and hSIRT2 in vitro using HDAC fluorescent activity assay. One of the potent hit compound, 4bb (ALN-184) was found to inhibit both hSIRT1 and hSIRT2. The effect of treatment of 4 bb (ALN-184) on cell proliferation/ viability was determined by MTT assay in several cell lines including HeLa, HEPG2.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

The effect of treatment of sirtuin inhibitor 4bb (ALN-184) on cell proliferation/viability was determined by MTT assay in more cell lines including HeLa, HEPG2, A549 U2OS, HCT116, hHADF. It was found to be cytotoxic to HEPG2, HeLa and HCT116 cells but not to hHADF cells indicating it is cytotoxic to cancer cells but not dermal fibroblasts. To check whether 4bb treatment causes apoptosis, we have analysed the cell cycle profiles of the treated cells and determined the number of apoptotic sub G1 cells. As indicated in Figure 2A, it did not cause apoptosis in human dermal fibroblasts and killed the HCT116 very efficiently. We next determined whether the apoptosis caused by 4bb was p53 dependent by determining if it activated p53 by increasing its acetylation. It indeed caused acetylation of p53 thereby causing massive cell death in cancer cells. We then checked whether 4bb causes apoptosis by intrinsic pathway by activating caspase 3 . The formation of cleaved (active) caspase-3 and PARP cleavage at different time course in the sirtuin inhibitor 4bb treated HCT116 cell line shows that 4bb induced the expression of cleaved caspase- 3 at 48 hours, but not at 24 hours after treatment. Cleaved PARP were slightly increased after 24 hours, but expression increases further after 48 hours. Therefore, these data shows sirtuin inhibitor 4bb causes apoptosis by activating caspase 3 .
We are currently, checking the molecular mechanism by which $4 b b(A L N 184)$ cause apoptosis.Discovery of novel Sirtuins inhibitor would facilitate design and development of novel anti-cancer therapeutics. In addition, deciphering molecular mechanisms involved in eliciting the anti-cancer effect will shed substantial light on the role of Sirtuins in cancer initiation and progression.

Figure 2. 4bb (ALN-184) is a novel Sirtuin inhibitor that activates p53 and triggers caspase-dependent apoptosis in cancer cells but not in human adult dermal fibroblasts A) Three cell lines (HCT116, HeLa and hHADF) were grown without or with indicated concentrations of 4 bb for 48 hours, and flow cytometric analysis of DNA content was carried out by propidium iodide staining and the percentage of sub-G 1cells were calculated and plotted as bar diagram. B) HepG2 and HeLa cells were cultured with compound 4bbat indicated concentrations (50 and $75 \mu \mathrm{M}$) for 24 and 48 h and level of acetylation of Sirtuin substrate p53 was determined by western blotting, total p53 is shown as a loading control.C) HCT116 cells were cultured with compound 4 bb indicated concentrations (50 and $75 \mu \mathrm{M}$) for 24 and 48 h and the level of caspase3 was determined by western blot, tubulinis shown as a loading control. D) HCT116 cells were cultured with compound 4 bb indicated concentrations (50 and $75 \mu \mathrm{M}$) for 24 and 48 h and the cleavage of PARP at different time points was analyzed by Western blot, tubulin was used as loading control.

Publications

1. Pasha J, Kandagatla B, Sen S, Seerapu GPK, Bujji S, Haldar D, Nanduri S and Oruganti S (2015). Amberlyst-15 catalyzed Povarov reaction of N -arylidene-1H-indazol-

6-amines and indoles: a greener approach to the synthesis of exo-1,6,7,7a,12,12a-hexahydroindolo[3,2-c]pyrazolo[3,4-f] quinolines as potential sirtuin inhibitors. Tetrahedron Letters (In press).

LABORATORY OF COMPUATIONAL BIOLOGY
 Computational studies on protein structure, function and interactions

Faculty	HA Nagarajaram
PhD Students	Anupam Sinha
	Manjari K
	HR Rachita
	Suryanarayana Seera
	VA Ramesh
	Rakesh Trivedi
	Arijita Mitra
Other Members	Rahul S Dhanke Rajkishore Mohapatra Collaborators
	Srikanth Rapole Jochen Schubert Jose Camara

Staff Scientist
Senior Research Fellow
(Till Jul. 2014)
Senior Research Fellow
(Till Sep. 2014)
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow
(Since Feb. 2015)
Project-Junior Research Fellow
Project-Junior Research Fellow
NCCS, Pune
University of Rostock, Germany
University of Madeira, Portugal

Objectives

1. Analysis of network properties of human proteins harboring disease causing missense mutations;
2. Structural analysis of instrinsically disordered proteins (IDPs) harboring disease causing mutations;
3. Analysis of Human-Virus PPI (HU-Vir PPI) network; and
4. The New Indigo Project
a. Multivariate analysis of the volatile compounds (VOCs) detected by the collaborating groups from the breath and urine samples of breast, lung and colon cancer patients and healthy individuals as a means to identify potential cancer biomarkers; and
b. Development of a database of VOCs detected by collaborators and a webportal hosting the database and other information related to this project
Summary of work done until the beginning of this reporting year (upto March 31, 2014)
5. Our studies on tissue-specific PPI networks revealed that the genes/nodes enriched with splice variants are associated with higher
centrality values than the genes with a few/ no splice variants.
6. Our studies on local and global hubs in human tissue-specific PPI networks revealed that:
a. Local hubs conserve their partners across all the tissues they are expressed whereas global hubs interact with diverse partners in diverse tissues.
b. The partners of global hubs occupy more diverse sub-cellular localizations than the partners of local hubs.
c. Both local and global hubs comprise of the hubs that are intramodular (akin to party hubs) and the hubs that are intermodular (akin to date hubs) in nature.
7. We investigated various properties of the human proteins (hVIPs) targeted by viral proteins and found that:
d. hVIPs are significantly enriched in disordered regions, expressed in more number of tissues and also show high centrality measures (including the new metric introduced by us called pathway centrality) than non-hVIPs.
e. Localization diversity (LD) of hVIPs is higher as compared with non-hVIPs
suggesting that human partners of viral proteins are wide spread in the cell.
f. hVIPs are evolving at slower rates as compared with non-hVIPs.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
Project 1: Computational analysis of human and virus protein-protein interaction (Hu-Vir PPI) networks.

1. We identified known domain-motif interactions as well as domain-domain interactions mediating Hu-Vir PPIs. We found that mere 11.6 \% of the Hu-Vir PPIs could be identified with known DDIs or DMIs. Viral proteins were found to harbor ELM (eukaryotic linear motif)-like motifs that interact with domains in human proteins.
2. A bipartite network (Fig. 1) of DDIs and DMIs in Hu-Vir PPI revealed that ELMs interact with their unique domain counterparts whereas
domains interact with multiple ELMs and domains ($p=0.01$) (Fig. 2a). There are more DMIs per hu-Vir PPI than DDIs ($p \ll 10^{-16}$) (Fig. 2b) and also multiple DMIs are used by individual Hu-Vir PPIs when compared with DDIs $\left(p<10^{-09}\right.$) (Fig. 2c). It is interesting to note that some of the linear motifs often used by viruses to interact with host proteins are involved in signaling pathways which include kinase functions (Pkinase, SH2, SH3_1 domains), cell cycle regulation (TRAF6, TRAF2, APPCC_Dbox1, WW domains) or protein degradation (MATH domain) or cleavage (Peptidase_S8) pathways. Viruses, therefore, by mimicking human motif interactions interfere in the regulation of the concerned pathways. A DMI, as compared with a DDI, is utilized by more number of viruses ($p<10^{-09}$) (Fig.2d) and this suggests that a DMI can form a common mode for molecular interactions by multiple viruses whereas DDIs are specific to viruses.

Figure 1. Domain and motif utilization in Hu-Vir PPIs represented by means of Human-virus domain-motif and domaindomain bipartite interaction network. Domains corresponding to human protein are represented by blue circles and motifs by blue vee. Domains corresponding to viral proteins are represented by coral octagon and motifs by coral triangles. Edge thickness corresponds to number of Hu-Vir PPI using particular DMI or DDI and node size corresponds to degree in the current network. Network comprises 54 domain (in hVIP)-motif (in VP) associations from 302 Hu-Vir PPI, 11 motif (hVIP)-domain (VP) associations from 47 Hu-Vir PPI and 99 DDI from 172 Hu-Vir PPIs.

Figure 2. a) Average degree of domains and motifs in bipartite DDI-DMI network. Domains are involved in higher number of interactions than linear motifs $(p=0.01)$. b) Average number of DDI or DMI per Hu-Vir PPI. There are higher number of DMIs per known Hu-Vir PPI than DDIs ($p \ll 10-16$). c) Average number of Hu-Vir PPIs using a given DDI /DMI. DMIs are utilized by higher number of Hu-Vir PPIs than DDIs ($p<10^{-08}$). d) Average number of viruses using a particular DDI/DMI. Multiple viruses same DMI whereas DDIs are virus specific ($p<10^{-08}$). Error bars represent \pm standard error in distribution.

Project 2: Sequence and structural analyses of intrinsically disordered human proteins (IDPs) harboring disease causing missense mutations.

1. In the literature, it is well documented that the pathogenic effects of disease causing mutations at protein structure-function level arise as a consequence of them disrupting the intramolecular interactions that stabilize protein 3D structure. However, not much has been reported on the effects of disease causing mutations on an IDP. Since IDPs are thought to adopt fast interconverting multiple conformations we surmised that the disease causing mutations might destabilize/affect the intramolecular interactions of one or more of these possible conformations thereby affecting the conformational heterogeneity
of disordered proteins, which form the very basis of their biological function. In this light, we undertook an in-depth conformational analysis of IDPs harboring disease causing missense mutations.
2. Disordered regions in human proteins were predicted using the program DISPRED3.0 installed on a local server. Any protein with 30% or more of its residues in disordered regions was denoted as IDP. Only those IDPs which form hubs in human PPIN were considered as such proteins are more likely to be associated with large conformational heterogeneity than the other IDPs. The known disease causing missense muations were obtained from HUMSVAR database (www.uniprot.org/docs/humsavar) of which,

416 were found to be mapping on to the disordered regions in IDPs. As a pilot study P53 - one of the IDPs was subjected to long molecular dynamics simulations of more than 200 ns and the simulations are currently underway (Fig. 3). We would be analysing the snapshots collected duing simulation to identify various conformational states and analyse how known disease causing mutations affect one or more of the identified conformational states.

Figure 3. Root Mean Square Deviation (RMSD) trajectory showing the time-evolution of P53 structure. RMSD of an instantaneous P53 structure at a given time is calculated with reference to the starting P53 structure
3. IDPs assume ordered structures when bound to their interacting partners. The kinds of secondary structures they adopt after binding wth their partners depend on their local amino acid sequence and also the intermolecular interactions at the binding interface. We undertook an analysis of known structures of IDPs complexed with their partner proteins. Our preliminary studies show that most of the disordered regions in our sample set adopt helical structures. Further studies are underway to calculate the propensities of residues in disordered regions to assume different secondary structures after forming complexes.

Project 3: Prediction of pathogenic effect of missense mutations: Incorporation of additional features into HANSA

1. We had earlier developed a SVM based method called HANSA (www.cdfd.org.in/ HANSA/) that predicts the pathgonic effect (Disease causing or not) of missense mutations in a given protein. This method
uses 10 discriminatory features extracted from the human protein and the features include protein position-specific preferences of amino acids, local structural features as well some intrinsic properties of the wild-type and the substituted amino acids. The current version of HANSA had been trained using HUMSVAR dataset of known 12390 disease and 8168 netral missense mutations. Very recently this dataset was revised with more number of missense mutations (22196 disease and 21151 neutral) as compared with the old set. We retrained HANSA using the new dataset and performed 10-fold cross-validation test, which showed that the new HANSA is as good as the old version (AUC = 0.88).
2. We also started investigating the network properties of the human proteins harboring disease causing missense mutations in conjunction with the human proteins harboring begign mutations. Our preliminary analysis reveals that the centrality values of proteins harboring disease mutations are distinct from those of the human proteins harboring neutral mutations (Fig. 4). This observation prompted us to explore further the usefulness of these network parameters of human proteins to train and test our program HANSA as a means to improve its sensitivity and specificity.

Project 4: An attractive and promising strategy for early cancer diagnosis through the assembly of the human cancer volatome (The New Indigo Project).

1. We have developed a webportal such that the front-end directly furnishes introductory details of this project with additional tabs and links for providing information category-wise in detail. The front-end has been designed using web-designing languages PHP, HTML for its general background. Additional effects on the website, including menu-bar, search panel etc Java-scripts, CSS (Cascading Style Sheets) and AJAX (Java Script with XML) have been used. For running of the web-portal in local server (system) Apache Server has been used.
2. The data of VOCs obtained from GC-MS analyses of breath and urine samples is complex because the number of VOCs detected is very large and it usually
outnumbers the number of patients and controls used in such studies. This typically leads to false correlations. We are currently studying some sample datasets sent by our collaborators to test various statistical tools that deal with small sample size with large dimensions. In addition, we are also exploring the methods that estimate missing values, which are often seen in breath and urine VOC data.

Future plans and directions

1. Continuaton of studies on IDPs harboring disease causing mutations.
2. Classification and analysis of disordered regions in proteins.
3. Incorporation of network based features of human proteins in HANSA.
4. Studies on tissue-wise PPI networks integrated with drug-protein interaction data.
5. Standardisation of a protocol for the statistical analysis of the VOCs detected
from breath and urine samples collected from cancer patients and healthy individuals toward development of cancer biomarkers. Development of a database for the VOCs detected by the collaborators.

Publications

1. Bashyam MD, Chaudhary AK, Kiran M, Nagarajaram HA, Devi RR, Ranganath P, Dalal A, Bashyam L, Gupta N, Kabra M, Muranjan M, Puri RD, Verma IC, Nampoothiri S and Kadandale JS (2014). Splice, insertiondeletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India. Journal of Cellular Biochemistry 115: 566-574.
2. Bashyam MD, Chaudhary AK, Kiran M, Reddy V, Nagarajaram HA, Dalal A, Bashyam L, Suri D, Gupta A, Gupta N, Kabra M, Puri R, Devi A R R, Kapoor S and Danda S (2014). Molecular analyses of novel ASAH1 mutations causing Farber lipogranulomatosis: analyses of exonic

Figure 4. Network Centrality metrics for non-overlapping set of proteins with disease (unshaded box) and neutral mutations (shaded box) from New HUMSAVAR dataset (All p-values are < 4.2e-4).
splicing enhancer inactivating mutation. Clinical Genetics 86: 530-538.
3. Bidchol AM, Dalal A, Shah H, Suryanarayana S, Nampoothiri S, Kabra M, Gupta N, Danda S, Gowrishankar K, Phadke SR, Kapoor S, Kamate M, Verma IC, Puri RD, Sankar VH, Devi AR, Patil SJ, Ranganath P, Jain SJ, Agarwal M, Singh A, Mishra P, Tamhankar PM, Gopinath PM, Nagarajaram HA, Satyamoorthy K and Girisha KM (2014). GALNS mutations in Indian patients with mucopolysaccharidosis IVA American Journal of Medical Genetics 164A: 27932801.
4. Mudunuri SB, Patnana S and Nagarajaram HA (2014). MICdb3.0: A comprehensive resource of microsatellite repeats from prokaryoticgGenomes Database doi:10.1093/database/bau005.
5. Patil SJ, Rai GK, Bhat V, Ramesh VA, Nagarajaram HA, Matalia J and Phadke SR (2014). Distal arthrogryposis type 5D with a novel ECEL1 gene mutation American Journal of Medical Genetics 164A: 28572862.
6. Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, Nagarajaram H and Câmara JS (2014). Breath analysis as a potential and non-invasive frontier in disease diagnosis: An overview. Metabolites 5: 3-55.
7. Rachita HR and Nagarajaram HA (2014). Viral proteins that bridge unconnected proteins and components in the human PPI network Molecular BioSystems 10: 24482458.
8. Sinha A and Nagarajaram HA (2014). Nodes occupying central positions in human tissue specific PPI networks are enriched with many splice variants. Proteomics 14: 2242-2248.
9. Rachita HR and Nagarajaram H A (2015). Molecular principles of human virus proteinprotein interactions Bioinformatics 31: 1025-1033.
10. Anusha U, Ranganath P, Jamal Md NJS, Krishna Prasad C, Anupam S, Verma IC, Phadke SR, Puri RD, Danda S, Muranjan MN, Jevalikar G, Nagarajaram HA and Dalal AB. Novel mutations of the ARSB gene in Indian patients with Mucopolysaccharidosis Type IV. Indian Journal of Medical Research (In press).
11. Bidchol AM, Dalal A, Trivedi R, Shukla A, Nampoothiri S, Sankar VH, Danda S, Gupta N, Kabra M, Hebbar SA, Bhat RY, Matta D, Ekbote AV, Puri RD, Phadke SR, Gowrishankar K, Aggarwal S, Ranganath P, Sharda S, Kamate M, Datar CA, Bhat K, Kamath N, Shah H, Krishna S, Gopinath PM, Verma IC, Nagarajaram HA, Satyamoorthy K and Girisha KM. Recurrent and novel GLB1 mutations in India. Gene (In press).

LABORATORY OF COMPUTATIONAL AND FUNCTIONAL GENOMICS

Computational and functional genomics of biological organisms

Faculty	Akash Ranjan	Staff Scientist
PhD Students	Rohan Misra	Senior Research Fellow
	Bhavik Sawhney	Senior Research Fellow
	Ajit Roy	Senior Research Fellow
	Suhail Yousuf	Senior Research Fellow
	Rajendra Kumar Angara	Senior Research Fellow
	Abhishek Kumar	Senior Research Fellow
	Debasish K Ghosh	Junior Research Fellow
	Shailesh Kumar Gupta	Junior Research Fellow
Other Members	N Saraswathi	(Since Jul. 2014)
	MJ Vijay Kumar	Project-Junior Research Fellow
	(Till Nov. 2014)	
	Project-Junior Research Fellow	
Collaborators	Regine Hengge	(Till Oct. 2014)
	Lothar H Wieler	Freie University, Germany
	M Sritharan	Freie University, Germany
	V Vindal	UoH, Hyderabad, India
		UoH, Hyderabad, India

Project 1: Studies on the role of Rv2989 (IcIR like protein) in the physiology of M. tuberculosis

Summary of work done until the beginning of this reporting year (upto March 31, 2014)
In our previous studies, we characterized promoter and binding site of Rv2989 (an IcIR like protein) in intergenic region of leuCD-Rv2989. In order to understand the physiological functions of Rv2989, we attempted to generate overexpression strain of M. smegmatis. However, several attempts to transform M. smegmatis with Hsp60P-Rv2989 failed to produce any viable transformants.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
Expression from inducible acetamidase promoter (aceP-Rv2989) resulted in viable transformants. Induction of protein expression with 0.2\% acetamide in growth media leads to M. smegmatis growth inhibition (Fig. 1A, 1B). Protein expression levels at different time points of growth stage after induction were monitored through western blot analysis and the
growth inhibition coincided with Rv2989 protein expression (Fig. 1C). Further, the M. smegmatis aceP-Rv2989 shows motility defect when grown on 0.3% agarose plates containing M63 salts (Fig. 1D). Because the mycobacteria species are known to lack flagella, and motility is because of swarming of growing bacteria, we assume the observed phenotype is because of lack of growth. The M. smegmatis aceP-Rv2989 shows rough and dry colony morphology in contrast to control cells, when grown on 7 H 10 agar plates (Fig. 1E). The rough colony morphology in M. smegmatis is a sign of changes in external surface morphology and most probably because of lack of Glycopeptidolipids (GPL) on external membrane. To investigate the morphological changes associated with Rv2989 expression, M. smegmatis aceP-Rv2989 strain was visualised under light microscopy at 100X magnification. Most of the cells ($\sim 80 \%$) were long approximately 2-5 times the size of control cells (Fig. 1F). The long cells are without any branches or bud like projections. We expect the long cells might be because of defective septum formation resulting in failure of cell division and growth.

Figure 1. Effect of M. tuberculosis Rv2989 over-expression on growth of M. smegmatis (A) Effect of M. tuberculosis Rv2989 over-expression on growth of M. smegmatis on solid media. Ten-fold serial dilutions of cells were spotted on 7H10 agar without or with 0.2% acetamide and incubated for 48-72hrs. (B) Effect of M. tuberculosis Rv2989 over-expression on growth of M. smegmatis in liquid culture. Growth at different time points was assessed spectrophotometrically. pJV53 is vector control and pJV2989 is 2989 cloned under inducible acetamidase promoter (aceP) The results represent the average and standard deviations from three independent experiments. (C) Analysis of acetamide inducible Rv2989 expression in M. smegmatis. Expression was analysed by western blot analysis of whole cell lysates from M. smegmatis at various time points as indicated. Protein was detected using anti flag antibody. (D) M. smegmatis aceP-Rv2989 shows reduced sliding motility. Strains were grown on 0.3% agarose plates containing M63 salts. Plates were incubated at $37^{\circ} \mathrm{C}$ for 3 days. (E) M. smegmatis aceP-Rv2989 shows altered colony morphology. The Rv2989 expressing cells show rough colony morphology on 7 H 10 agar plates. Plates were incubated at $37^{\circ} \mathrm{C}$ for 3 days. (F) M. smegmatis aceP-Rv2989 shows elongated cell morphology. Cells were grown in the absence and presence of 0.2% acetamide for 24 hrs and images captured using bright field microscopy with 100X objective.

Project 2: Characterization and functional studies of FadR like proteins from M. tuberculosis.

FadR proteins have been shown to play significant roles in cellular physiology and virulence. Mycobacterium tuberculosis genome encodes five proteins belonging to this family and the closest to the well studied E.coli FadR is Rv0494.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)
Rv0494, one of the FadR like proteins from M. tuberculosis showed enhanced expression during nutrient starvation, with expression driven from two independent promoters. The promoter proximal to start codon is sigA dependent and is active during growth under nutrient rich conditions. The second promoter,
sigC dependent, along with sigA promoter was responsible for the increased expression observed during nutrient starvation. Rv0494 was shown to be auto-regulatory with the operator site overlapping with the proximal promoter. Rv0494 was the first FadR family regulator from M. tuberculosis shown to be lipid responsive. Long chain fatty acyl CoA molecules with carbon chain length more than 14 carbons were observed to disrupt the protein-DNA interaction. Apart from being auto-regulatory, Rv0494 also repressed the expression of $R v 2326 c$ operon.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

Rv0494 is divergently transcribed to a Rv0493c, a probable operon. The transcription start site as well the promoter elements of Rv0493c operon were determined and were found to be present within the Rv0494 coding sequence. The operator site of Rv0494 in this organization was acting as road block for Rv0493c transcription; however, Rv0494 over-expression in Mycobacterium smegmatis-pEJ493c strain had no effect on
the promoter activity of pEJ493c. We found that over-expression of Rv0586 significantly repressed the promoter activity of pEJ 493 c with the site of interaction overlapping with that of Rv0494 (Fig. 2).
Project 3: Identification of novel class of small RNA molecules from Plasmodium falciparum: tRNA derived RNA fragments.
tRNA fragments are the novel class of small non-coding RNA molecules derived from tRNA molecules that has been recently discovered and besides microRNA, they have been proposed as the major class of non-coding RNA molecules. Their biogenesis involves RNase Z and Dicer processing machinery and based on their origin and size they have been classified as tRF1, tRF3 and tRF 5 .

Summary of work done until the beginning of this reporting year (upto March 31, 2014)
Previously, we have annotated tRNA modifying enzymes of P. falciparum through comparative genomics approach and hypothesizedP.falciparum

Figure 2. Rv0586 is a transcriptional repressor of Rv0493c operon
Mycobacterium smegmatis was transformed with pEJ493c to obtain M. smegmatis: pEJ493c. The resultant strain was re-transformed with all the FadR paralogs as well as the empty vector (pVV494, pVV586, pVV3060c, pVV0043c, pVV 0165 c and pVV 16). pEJ493c promoter activity was measured in each strain. As can be seen from the bar graph, none of the FadR proteins affected the pEJ493c promoter activity except pVV586 resulting in more than 5 -fold decrease in the promoter activity.
apicoplast tRNAguanine transglycosylase as putative target for chemotherapeutic intervention against the parasite. Furthermore, P. falciparum adenosine deaminase acting on tRNA(ADAT) was functionally characterized and it was observed to differentially act on different tRNA molecules both ADAT2 and ADAT3 were homogenously expressed from bacterial expression system and it was observed that ADAT3 plays an important role in binding tRNA molecules.
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

The high through-put sequencing of small RNA molecules from asynchronous culture of P. falciparum 3D7 strain and their subsequent analysis leads to identification of small RNA molecules that are derived from P. falciparum tRNA
molecules. The analysis of these populations suggested the presence of tRNA fragments in P. falciparum (Fig. 3). Besides the presence of canonical tRFs (tRF5, tRF3 and tRF1), P. falciparum consists of two more species of tRNA fragments and based on the site of cleavage, we named them as tRF4, which originate from D loop and extends till the anticodon loop, and tRF2, which consists of sequence between anticodon loop till T loop (Fig. 4A and 4B). Furthermore, tRNA halves of approximately 35 bases in size are abundantly present among the small RNA populations in P. falciparum intraerythrocytic stage. Out of total fragments that are derived from the tRNA molecules, 84% belonged to either tRFs or tRNA halves, while remaining 16% mapped to other regions of tRNA molecules.

A

B

Region	Read	Percentage $(\%)$
Exonic	4919059	90
Intronic	21385	0.39
tRNA	202759	3.72
snRNA	5520	0.1
snoRNA	73682	1.35
Others	230074	4.22

Figure 3. Mapping of small RNA molecules (A) Representation of proportion of small RNA molecules identified by high through-put sequencing mapped to different regions of P. falciparum transcriptome. (B) Tabulated summary of reads that are originated from different region of P. falciparum transcriptome.

B

Figure 4. tRNA fragments identified in P. falciparum (A) In P. falciparum, canonical tRF that originates from 5' and 3 ' end of tRNA molecules and tRNA halves, that originate from a cleavage event in anticodon loop, were identified. The sequencing data also revealed the abundant presence of two more class of tRFs, tRF4 and tRF2. Arrows denote cleavage sites (black arrow denotes the canonical cleavage site, while green represent new cleavage sites identified in this study). (B) Classification of different tRNA fragments. In P. falciparum besides the presence of canonical tRFs, tRF3 (orange), tRF5 (blue) and tRNA half (purple) there exists two more population of tRNA fragments, tRF4 (green) and tRF2 (red) which originates from anticodon loop till T loop and D loop, respectively.

Project 4: Characterization of structural and organizational properties of Huntingtin Interacting Protein K as intracellular aggregation sensor.

Huntingtin Interacting Protein K (HYPK) is ribosome associated protein which modulates intracellular aggregation formation of proteins like poly-glutamine expanded mutant Huntingtin to maintain cellular protesostasis. However, the mechanism of its functional activity towards proteins aggregation recognition and reduction is not understood at molecular level. We addressed the question of how HYPK senses protein aggregation by understanding structural and higher order organizational properties of HYPK.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

We have characterized HYPK to be capable of existing in a molten globule like state that can drive high oligomerization, finally leading to aggregation like form, both in vivo and in vitro. Concentration dependent oligomerization of HYPK leads to annular or non-fibrillar amorphous
aggregates. Helices in the C-terminal UBA like domain contains patches of hydrophobic regions that can undergo collapse to form small oligomeric seeds. Such seeds initially form the nucleation scaffold upon which addition of other seeds extends the oligomerization in 'Seed nucleation model' to annular complex. A charge rich low complexity region (LCR) spanning between $70-87^{\text {th }}$ residue region participates in electrostatic interactions between seeds to fulfil long range interaction and aggravates formation of non-fibrillar amorphous/ spheroid aggregates. HYPK is structurally bipartite with the N-terminal being unstructured and containing a negative charge rich patch. In cellular condition, this negative charge rich patch loops back to interact with LCR and shield charge(s) of LCR, resulting in prevention of aggregation propagation. Being aggregation prone, HYPK has high affinity towards other aggregation prone proteins like poly-Q expanded mutant Huntingtin, Amyloid beta -42 , E46K mutant α-Synuclein but not towards non-aggregating proteins like or ELAV1.

Figure 5. HYPK forms aggregation in vivo and in vitro. (a) [Upper panel] Endogenous expression of HYPK. Temporal expression of [Middle panel] FLAG tagged HYPK and [Lower panel] EGFP tagged HYPK. [Side panel] Immunoblot of endogenous HYPK, FLAG tagged HYPK and EGFP tagged HYPK. (b) Atomic force microscopic images of aggregates of HYPK, C-terminal 45 residue region, C-terminal 69 residue region and N-terminal 60 residue region at various concentrations. (c) Intracellular aggregate formation of HYPK compared to control EGFP and HuR-EGFP. (d) Temporal induction of intracellular HYPK aggregates. (e) Self association kinetics of HYPK, C-terminal 45 residue region, C-terminal 69 residue region. (f) CD spectrum of HYPK at varying pH . [Inset] CCA deconvoluted three component spectra of pH dependent CD spectral set. (g) HYPK bound ANS fluorescence intensity as function of increasing pH. [lnset] Red shift of emission wavelength maxima with increasing pH indicating burial of hydrophobic surface at higher pH .

Publications

1. Pandey SD, Choudhury M, Yousuf S, Wheeler PR, Gordon SV, Ranjan A and Sritharan M (2014). Iron-regulated protein HupB of Mycobacterium tuberculosis positively regulates siderophore biosynthesis
and is essential for growth in macrophages. Journal of Bacteriology 196: 1853-1865.
2. Yousuf S, Angara R, Vindal V and Ranjan A (2015). Rv0494 is a starvation-inducible, auto-regulatory FadR like regulator from Mycobacterium tuberculosis. Microbiology 161: 463-476.

LABORATORY OF DROSOPHILA NEURAL DEVELOPMENT

 Understanding patterning and development of Central Nervous System using

 Understanding patterning and development of Central Nervous System using Drosophila melanogaster

Faculty
PhD Students
Other Members
Rohit Joshi
Risha Khandelwal
Neha Ghosh
Raviranjan Kumar
Rashmi Sipani
Asif Ahmad Bakshi
P Kalyani
Maheshvari AC
Sromana Mukherjee
G Srivatsan

Staff Scientist \& WT-DBT
India Alliance Intermediate Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
(Since Feb. 2015)
Technical Officer
Project Assistant
Project Assistant
Project Assistant

(Since Aug. 2014)

Objectives

The key objective of the lab is to understand how neural progenitor cells attain their positional identity in developing Central Nervous System (CNS) of an organism and how does this translate into generation of a variety of cell types found in CNS (as represented in the Fig. 1). Hox family of transcription factors are known to play an important role in giving the positional identity to the cells and generation of a variety of cell types along the AP axis of the CNS during development. The molecular basis of this phenomenon is not well investigated. We are interested in understanding the molecular basis of Hox function in patterning CNS using Drosophila melanogaster as our model organism, focusing mainly on early embryonic and late larval stages of development. To this end, the specific aims of our lab are as follows:

1. Understanding the molecular function of Hox gene Abdominal-A (Abd-A) in larval CNS patterning.
Abdominal region of the Drosophila larval CNS has a less number of neurons compared to its thoracic counterpart. Hox gene Abd-A in known to cause programmed cell death (apoptosis) of neural progenitor cells (also called NeuroblastsNbs) and therefore limit the number of neurons in abdominal region of CNS. The precise molecular
details of how Abd-A cause Nb apoptosis are unknown. Genetic evidence suggests a role for a helix-loop-helix transcription factor Grainyhead (grh) along with Abd-A in control of this apoptosis. Characterization of the molecular basis of this link is primary goal of this project. Moreover since Grh is involved in Nb apoptosis and is not expressed in neuronal progeny refractory to this apoptosis, it is of interest to define grh regulation in these cells which keeps grh "on" in the pNbs and "off" in the neuronal progeny of pNbs .
2. Understanding the role of Hox gene Deformed (Dfd) in patterning of embryonic subesophageal ganglia.

Hox genes express in CNS (in neural progenitor cells) in embryonic stages of development (as represented in Fig. 1) but how does their expression patterns the embryonic nervous system is not well understood. Deformed (Dfd) is known to express in the cells of subesophageal ganglion of embryonic CNS, this project focuses on understanding autoregulation of Dfd in this region and find out how this helps in giving cells their specific positional identity. This is being done by using a 3.2 kb auto-regulatory CNS specific enhancer for Dfd which recapitulates the expression of Dfd gene in developing embryonic CNS. A smaller region of 630bp of NAE has also been reported to recapitulate the expression of the entire 3.2 kb enhancer and this region is also being analysed.

Figure 1. Precursor cells for embryonic Nbs start out as equivalent cells and attain their specific positional identity by Hox gene expression. This gets reflected as specific Nbs identity and thereby determine proliferation and differentiation profile of these cells along the AP axis. In larval stages thoracic, abdominal and terminal post-embryonic Nbs (pNbs) differ in their number and proliferation profile as shown. Thoracic pNbs stop proliferation by cell cycle exit, while abdominal pNbs (in both sexes) and terminal pNbs (tNbs; in females) die as a result of apoptosis, the tNbs in males continue dividing and give rise to more neurons as shown.
3. Investigating the role of Abdominal-B (Abd-B) and Double-sex (Dsx) in terminal CNS patterning.
A set of pNbs in the terminal region of CNS show sex specific proliferation and survival. Although the role of the sex determining hierarchy and Hox gene Abd-B, in growth and differentiation of Drosophila genital discs, is well worked out, little is known about how sex determination hierarchy and Abd-B intersects with cell proliferation and survival behavior of terminal Nbs (tNbs) in the larval VNC. Double-sex (Dsx) is the most downstream transcription factor of the sex-specification hierarchy. I intend to test the interaction between Abd-B and Dsx in gender specific proliferation of these cells.

There are 12 pNbs in this region of CNS of which 8 stop dividing in both males and females at mid L3 stage of development. The remaining 4 Nbs which we refer to as tNbs have been known divide differentially in males and females. The hypothesis for this part of work is that Abd-B and Dsx (Double-Sex being the most downstream member of sex specification hierarchy) play a role in sex specific proliferation of these tNbs.
The pNb lineage in terminal region have been characterized and it is known that female specific isoform of Dsx (DsxF) is responsible for the apoptosis of sex-specific tNbs in females. But the molecular mechanism behind the phenomenon of apoptosis of sex-specific tNBs in females, role of Dsx in tNB proliferation and how sex specific
tNbs are different from other 8 Nbs is not known
Summary of work done until the beginning of this reporting year (upto 31 March, 2014)

1. Understanding the molecular function of Hox gene Abd-A in larval CNS patterning.

It is known that grim gene play primary role in this apoptosis and relevant enhancer for the apoptotic genes in Nbs lies in 23kb genomic region referred to as NBRR-Neuroblast Regulatory Region. A systematic screening of the 23kb NBRR has been done to identify the enhancer responsible for pNb apoptosis. The 23 kb region was divided into 5 overlapping genomic fragments (of $6-10 \mathrm{~kb}$) which were screened for their ability to drive pNb specific expression of lacZ reporter in late third instar larval (LL3) brain. These 5 fragments have been amplified by PCR using region specific primers from genomic DNA and all of them have been cloned into pCasPer-lacZ shuttle vectors to make transgenic lines. The transgenic line for 3 of the fragments have been analyzed which has helped us to narrow down the search to an overlapping region of two 8 kb fragments. A genetic deletion was made by transposon mobilization, this deletion in trans-heterozygotic condition with a bigger deletion blocked pNb apoptosis in abdominal region, suggesting that relevant enhancer is within this smaller deletion generated by us. Simultaneously a 4kb enhancer of grainyhead which is responsible for its expression in CNS was sub-fragmented and narrowed down the relevant enhancer for the
expression of grainyhead in CNS to 1 kb region. Currently this region is being further analysed to identify transcriptional factors that could be regulating grainyhead differentially in Nbs versus neurons.
2. Role of Hox gene Deformed (Dfd) in patterning of embryonic subesophageal ganglia

The 608bp Dfd autoregulatory element was scanned for Hox-Exd binding sites and was two putative compound binding sites were identified for these two transcription factors. In vitro binding studies were done on these binding sites using EMSA and both of the binding sites showed binding to Dfd-Exd hetrodimer. In order to investigate the in vivo relevance of these binding sites, these sites were mutagenized in 608bp DNA element and these various mutagenized forms of the enhancers have been sub-cloned into the pCasPer-nls-lacZ shuttle vector and the transgenic lines are being made for the same. These transgenic lines will be tested for their capacity to activate the reporter β-galactosidase to test the relevance of the binding site and direct role for these transcription factors in autoregulation of Dfd gene.
3. Investigating the role of Abdominal-B (Abd-B) and Double-sex (Dsx) in terminal CNS patterning.
We find that Abd-B and Dsx express in tNbs in CNS. Since Grh is already known to play a role in pNb apoptosis. We tested and found that Grh was expressed in tNbs of male larvae at mid L3 stage.

Cyclin E which promotes G1-S transition in dividing cells is being investigated to identify the mechanism behind continued sex specific proliferation of tNbs in male larval CNS. A 1.9 kb enhancer element of cycE expresses in Nbs, and has binding site for Hox gene $A b d-A$ and $A b d-B$ and potential Dsx binding sites. A BrDU, lacZ and Dpn staining of cycE-1.9kb-lacZ transgenic flies show that lacZ line marks dividing Nbs in terminal regions of CNS.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

1. Understanding the molecular basis of Hox gene Abdominal-A (Abd-A) in larval CNS patterning.

We had narrowed down the relevant enhancer to 3 kb overlapping region of two 8 kb fragments after analysis of all 5 enhancer-lacZ lines of

NBRR. We generated a smaller 2 kb enhancerlacZ from this overlapping region and found that it is expressed in pNbs of abdominal and terminal region of larval central nervous system.

Genetic isolation of apoptotic enhancer

We had genetically isolated the apoptotic enhancer by mobilizing a transposon inserted in $N B R R$ to generate a smaller deletion (NBRR-22). This deletion in transheterozygotic combination with already existing deletion of NBRR gives ectopic pNbs in the abdominal region of CNS at LL3 stage. The PCR mapping indicates that 14.5 kb region of the NBRR encompassing the relevant apoptotic enhancer has been deleted in this case.

The expression of 2 kb enhancer in abdominal pNb and presence of ectopic pNbs in 14.5 kb deletion suggests that we have narrowed down the relevant apoptotic enhancer from 23kb NBRR to 2 kb region of the genome. We are currently working to test Grh and Abd-A binding sites in vitro and to test hypothesis of transcriptional activation of Grim by $A b d-A$ and Grh.
2. Role of Hox gene Deformed in patterning of embryonic subesophageal ganglia.

The costaining of Dfd and cell types specific markers like Dpn (a neural progenitor specific marker) Elav (neuron specific marker) and Repo (glial cell specific marker), established that Dfd is expressed in neural progenitor cells (neuroblastsNbs), neurons and glial cells. Subsequently using the NAE3.2-lacZ transgenic line, it was established that expression of Dfd is auto regulated in Nbs and neurons since Dpn positive cells in were LacZ positive as well. Subsequently we find that the autoregulation is differentially dependent on Hox cofactor Homothorax in a region specific manner. We find that Homothorax is essential for autoregulation in neural stem cells of maxillary region but not in case in mandibular region of Dfd expression. Lastly we find that Homothorax homeodomain is not necessary for Deformed neural autoregulation.
3. Investigating the role of Abdominal-B (Abd-B) and Double-sex (Dsx) in terminal CNS patterning.

Grh is known to play a role in pNb apoptosis. We tested and found that Grh was expressed in tNbs of male larvae at mid L3 stage. Subsequently we looked at grh mutants and found surviving Nbs in the terminal region of female larval CNS. We
next tested mutant for apoptotic gene grim and found surviving ectopic Nbs in the terminal region of female larval CNS. In order to test if the enhancer responsible for the expression of grim in dying NDbs lies within NBRR region, we tested the enhancerlacZ lines for their expression in tNbs of male larval central nervous system. We found enhancer-lacZ lines expressed in tNbs of male larval CNS. The
genetic deletion which deletes NBRR showed ectopic Nbs in terminal region of female larval CNS. These ectopic Nbs in the terminal region of female larval CNS needs to be tested for expression of Dsx gene to conclusively establish that female tNbs are undergoing grim mediated apoptosis. We are in process of generating anti-Dsx antibody to carry out these experiment.

LABORATORY OF FUNGAL PATHOGENESIS
 Understanding the pathobiology of an opportunistic human fungal pathogen Candida glabrata

Faculty	Rupinder Kaur
PhD Students	Maruti Nandan Rai
	Sapan Borah
	Vivek Kumar Srivastava Vandana Mubashshir Rasheed Priyanka Bhakt Kundan Kumar
Other Members	Suneetha KJ Gaurav Bairwa
	Sapan Borah CollaboratorsGujjula Rahul Shivarathri Raju Rajendra Prasad Krishnaveni Mishra Suman Thakur Dominique Sanglard

Staff Scientist
Senior Research Fellow
(Till May 2014)
Senior Research Fellow
(Till Jul. 2014)
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow
(Since Jul. 2014)
Technical Officer
Project-Senior Research Fellow (Till Apl.2014)
Project-Senior Research Fellow
(Since Jul. 2014)
Project-Junior Research Fellow
Project Assistant
(Till Apl. 2014)
JNU, New Delhi
UoH, Hyderabad
CCMB, Hyderabad
University of Lausanne and University Hospital Center, Lausanne, Switzerland

Candida spp. are the leading cause of disseminated fungal infections and rank fourth among the most common nosocomial pathogens. Among Candida species, prevalence of Candida glabrata is on the rise, and it accounts for up to 30% of total Candida blood stream infections. C. glabrata is a common resident of the healthy human microflora but is capable of causing life-threatening, systemic infections in the immunocompromised host. It is an asexual haploid budding yeast and exists in the blastoconidial form in both commensal and pathogenic states. In our laboratory, we study multiple virulence aspects of C. glabrata with particular emphasis on antifungal drug resistance mechanisms and interaction with host immune cells.

Project 1: Functional genomic analysis of C. glabrata-macrophage interaction.

Objectives

1. Analysis of intracellular behavior;
2. Screening of a C. glabrata mutant library for altered survival profiles; and
3. Identification and analysis of genes required for survival in vitro and in vivo

Summary of work done until the beginning of this reporting year (upto March 31, 2014)
Using an in vitro system comprised of human monocytic cell line THP-1, we demonstrated that wild-type C. glabrata cells are able to impede phagolysosome acidification, counteract/
survive the reactive oxygen species generated and replicate in THP-1 macrophages. We further screened a Tn7 insertion mutant library, representing 50% of the C. glabrata genome, for altered survival in macrophages, and identified 53 novel genes required for intracellular survival and/or proliferation. These genes were implicated in diverse biological processes including chromatin and cell wall organization, signal transduction and Golgi vesicle transport. In addition, we showed that CgVps 15 and CgVps 34 constitute regulatory and catalytic subunit of the class III phosphoinositide 3-kinase (PI3K), and are essential for intracellular survival and virulence in C. glabrata.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

As PI3K in Saccharomyces cerevisiae is implicated in regulation of both anterograde and retrograde vesicular trafficking pathways, we examined the role of CgVps 15 and CgVps 34 in protein trafficking in the current reporting period. For this, we first checked sorting of the vacuolar lumenal hydrolase carboxypeptidase Y (CPY; encoded by the CgPRC1 gene) to the vacuole in Cgvps154 and Cgvps34s mutants. Any defect in cellular protein sorting pathways is known to result in mislocalization and altered processing of CPY in S. cerevisiae. Further, the guanine nucleotide-dependent interaction of Vps15 and Vps34 with Gpa1 (GTP-binding a-subunit of the heterotrimeric G protein) regulates G-proteincoupled receptor (GPCR) pheromone signaling at endosome in S. cerevisiae. Hence, we used the mutant lacking CgGpa1 to study the effects of GPCR pheromone signaling on vesicular trafficking in C. glabrata. As shown in Figure 1A, compared to wt (wild-type) cells, 5 -fold higher secretion of CPY was observed in Cgvps15 and Cgvps344 mutants. Of note, enhanced secretion of CPY was abrogated in the Cgvpsreconstituted strains (Fig. 1A). The Cggpa1s mutant did not secrete any appreciable amount of CPY to the extracellular media (Fig. 1A) indicating that PI3K signaling but not GPCR signaling is required for trafficking of CPY enzyme to the vacuole in C. glabrata.

To examine if mislocalization of CPY in Cgvps15 1 and Cgvps34s mutants is due to CPY overproduction, we checked CPY levels in mutants via western analysis and
observed about two-fold lower amounts of CPY in Cgvps154 and Cgvps34s mutants (Fig.1B). However, this CPY form, compared to wt cells ($\sim 59 \mathrm{kDa}$ band), was of slightly higher molecular size (~ 62 kDa band) (Fig. 1B). Further, qPCR analysis revealed ~ 3-fold elevated transcription of the CgPRC1 gene in Cgvps154 and Cgvps344 mutants (Fig. 1C) suggesting that CPY mislocalization could be a combined result of increased production, defective processing and mistrafficking of the CPY enzyme. Notably, no significant change in levels of the cellular CPY was observed in Cggpa1s cells (Fig. 1B). Together, these data indicate that lack of CgVps 15 and CgVps 34 results in impaired processing and missorting of CPY in C. glabrata.

Next, to examine the trafficking of a GPI (glycosylphosphatidylinositol)-linked cell wall adhesin to the cell surface in Cgvps154 and Cgvps344 mutants, we measured expression of the Epa1 (Epithelial adhesin 1) at the cell wall by FACS (Fluorescence-activated cell sorting) analysis using anti-Epa1 antibody. We observed 2- to 6-fold higher Epa1 cell surface expression in Cgvps15 Δ and Cgvps34 4 mutants (Fig. 1D). Notably, Epa1 is trafficked to the cell surface presumably via the classical secretory pathway (ER-Golgi-plasma membrane) and required for in vitro adherence. To check if Epa1 at the cell wall is functionally active in Cgvps mutants, we measured adherence of the C. glabrata cells to the Lec2 Chinese hamster ovary epithelial cells. The epa14 mutant was used as a control for adherence assays. As shown in Figure 1 E , compared to $\sim 30 \%$ of wt cells, $\sim 15 \%$ of epa1s cells adhered to Lec2 cells. In contrast, Cgvps15 1 and Cgvps34s mutants exhibited ~2.5-fold higher adherence to Lec2 cells compared to wt cells which was restored to the $w t$-adherence level upon ectopic expression of CgVPS15 and CgVPS34 gene, respectively (Fig. 1E). As expected, the Cggpa1s mutant displayed adherence to Lec2 cells similar to that of wt cells (Fig. 1E). Notably, GPI-linked aspartyl proteases are known to proteolytically cleave Epa1 from the cell surface and release into the medium. The higher Epa1 levels at the cell surface in Cgvps154 and Cgvps344 mutants could be either due to reduced processing or defective retrograde trafficking from the cell wall. Experiments are currently underway to test these hypotheses.

Figure 1. PI3K is required for trafficking of the vacuolar lumenal hydrolase carboxypeptidase Y (CPY) and the major adhesin Epa1 to the vacuole and the cell wall, respectively (A) Representative colony blot analysis illustrating CPY secretion in indicated C. glabrata strains. Control lane depicts spotting and growth of equal numbers of yeast cells for each strain. Immunoblot analysis with anti-Gapdh antibody was used as a control for cell lysis. (B) Representative immunoblot analysis of CPY levels. wt and indicated mutant strains were collected after 4 h growth in the YPD medium ($\mathrm{OD}_{600}=0.4-0.6$), and proteins were extracted and quantified. $30 \mu \mathrm{~g}$ protein samples were resolved on a 12% SDS-PAGE gel and immunoblotted with anti-CPY and anti-Gapdh antibodies. Asterisk indicates a shift in the molecular weight of CPY in Cgvps154 and Cgvps344 mutants. CgGapdh was used as loading control. (C) qPCR-based quantification of CgPRC1 mRNA levels in indicated YPD medium-grown, log-phase C. glabrata strains. Data (mean \pm SEM of three independent experiments) were normalized to an internal CgGAPDH mRNA control and represent fold change in expression in Cgvps154 and Cgvps344 mutants compared to wt cells. (D) FACS analysis of Epa1 surface expression in indicated C. glabrata strains. C. glabrata cells were grown in YPD medium for 10 h . At indicated time points, cells were collected and labelled with an anti-Epa1 antibody. A FITC-conjugated secondary antibody was used to examine cell surface expression of Epa1 and the mean of fluorescence intensity is indicated. (E) Adherence analysis of indicated S^{35}-labelled C. glabrata cells to Lec2 ovary epithelial cells. Data represent mean \pm SEM of three to four independent experiments. Statistically significant differences in the percent adherence between wt and mutants are marked (${ }^{*}, \mathrm{p} \leq 0.05,{ }^{* *}, \mathrm{p} \leq 0.01 ;{ }^{* * *}, \mathrm{p} \leq 0.001$, two-tailed Student's unpaired t -test).

Project 2: Mechanisms of iron acquisition and iron homeostasis in C. glabrata.

Objectives

1. Identification of major iron acquisition and iron homeostasis mechanisms;
2. Identification of the C. glabrata genes specifically induced in response to iron availability; and
3. Role of the identified genes in iron homeostasis

This is a new activity.
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
The ability to acquire iron form host tissues is a major virulence factor of pathogenic organisms, and a significant correlation between host iron content and pathogenicity of an organism has been reported.This project is aimed at elucidation of the strategies that C. glabrata employs to acquire, transport, utilize and store iron in accordance with the iron availability. Using a reverse genetics approach, we have identified and attempted to disrupt C. glabrata orthologs of the genes that are implicated in iron uptake and homeostasis in other fungal species. These genes encode components of the high-affinity iron uptake ($\mathrm{CgFtr} 1, \mathrm{CgFet} 3$, CgCcc2 and CgFre6), low-affinity iron transport (CgFet4), siderophore uptake (CgSit1), iron storage and utilization (CgYfh1, CgFth1 and CgFet5), host-specific iron utilization ($\mathrm{CgHm} \times 1$, CgCcw14 and CgMam3) and transcriptional regulatory (CgAft1 and CgAft2) systems in C. glabrata. Of this set of 14 genes, we were unable to delete the CgAFT1 gene, whose ortholog in S. cerevisiae codes for a master regulator of the high-affinity iron uptake system, suggesting that CgAft1 may be essential for cell viability in C. glabrata. Phenotypic profiling of the created 13 deletion strains revealed that three mutants, Cgftr1s (disrupted for an iron permease), Cgfet3 Δ (disrupted for a multicopper oxidase) and $\mathrm{Cgccc} 2 \Delta$ (disrupted for a copper transporter), displayed sensitivity to iron starvation caused by cell impermeable, extracellular Fe^{2+} specific chelators, bathophenanthroline disulfonate (BPS) and ferrozine. Their attenuated growth was largely due to iron-limitation as it was rescued by supplementing the medium either with ferric chloride or hemoglobin.

Measurement of the intracellular iron levels in log-phase C. glabrata wt and mutant cells revealed iron content of Cgftr1s, Cgfet3s and Cgccc2s mutants to be $\sim 20-50 \%$ lower than that of the wt cells (Fig. 2A) in accordance with their increased sensitivity to iron-limitation. However, although growth of the Cgfet4D (disrupted for low-affinity plasma membrane Fe(II) transporter) mutant was not attenuated in the iron-poor medium, it still accumulated 40% less iron levels than the wt strain (Fig. 2A) which may be reflective of an overall perturbed ion homeostasis. As reported for S. cerevisiae, disruption of the mitochondrial matrix iron chaperone, CgYfh1, led to 3.5-fold higher levels of intracellular iron in C. glabrata (Fig. 2A) indicating the conserved Fe-S cluster assembly machinery between these two yeasts. Surprisingly, we also observed ~40$50 \%$ increase in the intracellular iron content in Cgccw144 (lacking the cysteine-rich CFEM (common in fungal extracellular membranes) domain-containing cell wall structural protein) and Cgmam3 3 (lacking the putative hemolysin) mutants, implying a perturbed iron homeostasis.
To address the molecular mechanisms underlying high intracellular iron content in Cgccw144, Cgmam3s and Cgyfh1s mutants, we examined expression of the genes encoding constituents of the high-affinity iron uptake system by quantitative real-time PCR (qPCR) analysis. Compared to wt cells, transcript levels of CgAFT1, CgAFT2, CgFTR1, CgFET3 and CgFET4 genes were found to be 2-, 3-, 5-, 3- and 5-fold higher, respectively, in the Cgyfh1s mutant (Fig. 2B). Further, contrary to the Cgyfh1s mutant, the Cgmam3s mutant did not display an activated high-affinity iron uptake system (Fig. 2B). Notably, transcript levels of CgFTR1, CgFET3 and CgFET4 were found to be about 1.5 -fold higher in the Cgccw14 1 mutant (Fig. 2B). Collectively, these data indicate that the reductive iron transport system may not be the sole regulator of iron homeostasis in C. glabrata, and the elevated iron content of Cgmam3 4 and Cgccw14s mutants could be due to yet to be identified mechanisms.
Next, to investigate which components of iron acquisition and homeostatic machinery are required for virulence of C. glabrata, we examined fungal burden in Balb/c mice infected intravenously either with the wildtype or the mutant strains. As shown in Figure

Figure 2.Genes involved in iron homeostasis are required for virulence of \boldsymbol{C}. glabrata. (A) Intracellular iron content of the indicated, YPD medium-grown, log-phase C. glabrata cells was quantified by the BPS-Fe complex absorbance. Data are expressed as the percentage (mean \pm SEM, $n=3-6$) of the iron levels in the mutants relative to the wt sample (taken as 100%). Statistical analysis was performed using a paired, two-tailed, Student's test (${ }^{*}, \mathrm{p} \leq 0.05$; **, $\mathrm{p} \leq 0.01$; ***, p 0.001).(B) qPCR analysis of CgAFT1, CgAFT2, CgFTR1, CgFET3, and CgFET4 transcript levels in YPD mediumgrown, log-phase wt and mutant strains. Data (means of 3-5 independent experiments \pm SEM) were normalized to an internal CgACT1 mRNA control, and represent fold change in expression in mutant cultures compared to wt cells.(C) $6-8$ week-old, female BALB/c mice were infected intravenously with 4×10^{7} C. glabrata cells and sacrificed 7 days post infection. Diamonds represent the CFUs recovered from target organs, kidneys, liver, spleen and brain, for individual mice. Bars represent the geometric mean ($\mathrm{n}=12-24$) of CFUs per organ. Statistically significant differences in the CFUs between wt and mutant strains are indicated (${ }^{* *}, \mathrm{p} \leq 0.01$ and ${ }^{* *}, \mathrm{p} \leq 0.001$; two-tailed Student's unpaired t -test).

2C, we recovered about 6-10-fold lower yeast CFUs from the kidneys (primary target organ of infection) of mice infected with Cgftr1s, Cgfet3a, Cgccc2a, Cgfre6a and Cgfet5 mutants compared to CFUs retrieved from the kidneys of wt-infected mice. Notably, no statistically significant differences in the fungal
burden were seen between the kidneys of wt- and Cgsit14, Cgfth14, Cgyfh1a, Cgaft2a, Cgccw144 and Cghmx14-infected mice (Fig. 2C). Unexpectedly, fungal load in kidneys of the Cgfet4 4 -infected mice were 3 -fold higher than the mice infected with the wt strain (Fig. 2C). In contrast, mice infected with the Cgmam3
mutant displayed 20-110-fold reduced fungal burden in kidneys, liver and brain compared to wt-infected mice (Fig. 2C). Statistically similar yeast CFUs were obtained from the liver of wt and Cgftr1 Δ, Cgfet3 Δ, Cgccc2 2Δ, Cgfet4 4 , Cgfet5s, Cgfth1s, Cgaft2s, Cgsit1s and Cghmx14-infected mice (Fig. 2C). Interestingly, the Cgccw14 4 mutant showed 16 -fold reduced survival in the liver. In contrast, CFUs obtained from the liver of Cgfre64- and Cgyfh1s-infected mice were 3 - and 4 -fold higher, respectively, than those recovered from the liver of wtinfected mice (Fig. 2C). In spleen, we observed 21-fold reduced yeast CFUs for the Cgccw14 mutant (Fig. 2C). Lastly, we recovered about 6×10^{4} yeast cells from the brain of mice infected with wt C. glabrata cells, while the Cgccc2s- and Cgyfh1s-infected mice exhibited 4- and 3-fold lower fungal load, respectively, in the brain (Fig. 2C). Intriguingly, the Cghmx1s mutant displayed 3-fold higher survival in the brain (Fig. 2C). It is worth noting that differential survival of iron homeostasis-defective mutants in target organs, kidneys, liver, spleen and brain, may be reflective of iron abundance in these organs. Moreover, diminished survival of the Cgccw14 4 mutant in the liver and the spleen of Balb/C mice underscore the role of CgCcw14 in survival in vivo. Unexpectedly, Cgsit14 and Cgaft2s mutants, disrupted for siderophoremediated high-affinity iron transporter and transcriptional factor, respectively, exhibited virulence similar to that of the wt cells (Fig. 2C) indicating that C. glabrata cells probably do not acquire iron through the siderophore-uptake pathway in the mammalian host, and that either CgAFT1 or another yet to be characterized transcriptional factor, is the master regulator of iron homeostasis genes under both in vitro and in vivo conditions. Although diminished survival in three organs was observed only for the Cgmam3s mutant, attenuated kidney fungal burden in mice infected with mutants disrupted for the high-affinity iron uptake system implicate CgFTR1, CgFET3, CgCCC2, CgFRE6 and CgFET5 genes in virulence of C. glabrata in the murine model of disseminated
candidiasis. Future investigations will be directed to delineate the role of hemolysin-like protein CgMam3 and the cell wall structural protein CgCcw14 in iron homeostasis.

Publications

1. Bairwa G, Rasheed M, Taigwal R, Sahoo R and KaurR(2014).GPI(glycosylphosphatidylinositol)linked aspartyl proteases regulate vacuole homeostasis in Candida glabrata. Biochemical Journal 4 58:323-334.
2. Borah S, Shivarathri R, Srivastava VK, Ferrari S, Sanglard D and Kaur R (2014). Pivotal role for a tail subunit of the RNA polymerase II mediator complex CgMed2 in azole tolerance and adherence in Candida glabrata. Antimicrobial Agents and Chemotherapy 58: 5976-5986.
3. Shah AH, Singh A, Dhamgaye S, Chauhan N, Vandeputte P, Suneetha KJ, Kaur R, Mukherjee PK, Chandra J, Ghannoum MA, Sanglard D, Goswami SK and Prasad R (2014). Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochemical Journal 460:223-235.
4. Srivastava VK, Suneetha KJ and Kaur R (2014). A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domaincontaining protein in iron homeostasis and virulence in Candida glabrata. Biochemical Journal 463:103-114.
5. Rai MN, Sharma V, Balusu S and Kaur R (2015). An essential role for phosphatidylinositol 3-kinase in the inhibition of phagosomal maturation, intracellular survival and virulence in Candida glabrata. Cellular Microbiology 17:269-287.
6. Srivastava VK, Suneetha KJ and Kaur R. The mitogen-activated protein kinase CgHog 1 is required for iron homeostasis, adherence and virulence in Candida glabrata. FEBS Journal (In press).

LABORATORY OF GENOMICS AND PROFILING APPLICATIONS

Faculty
PhD Students

Other Members

Madhusudan Reddy Nandineni
Anujit Sarkar
Soumya Rao
Mugdha Singh
Anilkumar Challagandla
Vineesha Oddi

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Project Assistant
(Since Oct. 2014)
Project-Junior Research Fellow

Objectives

1. Human genetic diversity studies among various population groups in India; and
2. Plant-fungal interaction studies in the chilli-Colletotrichum pathosystem

Project 1: Human genetic diversity studies in various population groups in India.
Summary of work done until the beginning of this reporting year (upto March 31, 2014)
In an attempt to build a single nucleotide polymorphism (SNP)-based panel for human identification (HID) in Indian populations, a panel of 270 identity-testing SNPs were shortlisted for genotyping individuals from different population groups. Based on studies with externally visible characteristics (EVCs) in worldwide populations, a set of 43 SNPs associated with skin pigmentation, 6 SNPs for body mass index (BMI) and 17 SNPs for body height were also shortlisted to investigate the genotype-phenotype correlation in the Indian populations. In addition to interrogating the markers on the autosomes, the uni-parental markers (mitochondrial DNA and non-recombining region of Y-chromosome, NRY), which carry the information relevant to maternal and paternal lineages, respectively were also studied to understand better the genetic diversity in these populations. We had also previously reported about the attempts to study the human salivary microbiome employing next generation sequencing (NGS) approach by investigating the informative 16 S rRNA region in the microbes.
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
a) SNPs for HID purposes

A detailed description of the 384-plex SNP genotyping panel comprising of SNPs for identity-testing, skin pigmentation, BMI and body height was given previously. In this
reporting period, ~ 370 unrelated individuals from different geographical regions of India were genotyped for the target loci using GoldenGate ${ }^{\circledR}$ Genotyping assay (Illumina, Inc, USA) according to manufacturer's instructions. Genotyping of additional samples is under progress. The resultant data is being analyzed to design a panel of 60-80 SNPs which can be employed for HID in Indian populations. The genotyping data from these individuals will also be used for the genotype-phenotype correlation studies of the various EVCs described above to assess the phenotype-informative markers in these populations.
b) Studying genetic variations in Indian populations employing uniparental markers.

As part of the population diversity studies based on uniparental markers, the genetic variations among and between Indian populations were studied by genotyping short tandem repeats (STRs) on Y-chromosome using PowerPlex ${ }^{\circledR}$ Y23 chemistry (Promega Corporation). For comparative studies, autosomal STRs from the same set of samples were also genotyped using PowerPlex ${ }^{\circledR}$ Fusion chemistry (Promega Corporation). Six newly incorporated markers viz., DYS481, DYS570, DYS576, DYS549, DYS643 and DYS533 in PowerPlex ${ }^{\circledR}$ Y23, which are scantly studied in the Indian populations, were genotyped along with other markers. The studies on these markers are expected to provide information about the allelic distribution in these populations, which could be useful in calculation of allelic frequencies for forensic HID applications. DYS570 and DYS576, the two
rapidly mutating (RM) Y-STRs markers, which have the potential to differentiate individuals even within the same paternal lineage owing to their high mutation rate (> $1 \times 10^{-2} /$ nucleotide/ generation) as compared to other Y-STRs (1 x 10-3/nucleotide/generation) were also investigated. In the preliminary study, 120 male individuals from four different populations viz., Himachal Pradesh (HP), Jammu and Kashmir (JAK), Maharashtra (MH) and Rajasthan (RAJ) were genotyped for the various loci using the above chemistries and the data analysis was performed using GenALEx 6.501 and Arlequin v3.5.1.2 to infer statistical parameters such as gene diversity indices, molecular variance within and between the populations. Gene diversity from the samples studied so far for autosomal loci indicated that RAJ and MH populations have the highest and the lowest polymorphic loci, respectively. The analysis of molecular variance revealed that the variation within the studied populations was greater than the variations among populations. The significance of these findings is being investigated further.

The RM Y-STR loci, DYS570 and DYS576 were found to be the most polymorphic markers in the studied populations which is in concordance with the other reported studies. In future, in order to get a clearer and more comprehensive picture, additional samples from various populations would be genotyped for the autosomal and Y-chromosomal STR markers and compared with the rest of the world populations. For the mitochondrial (mt) DNA analysis, our preliminary studies have shown that the control (hypervariable) region alone is less informative as compared to the complete mt genome sequence; and therefore for our further studies it was decided to adopt a high throughput NGS strategy for analysis of the complete mt genome.
c) Studies on human salivary microbiome in Indian populations.
The NGS data of salivary microbiome consisting of variable regions (V1 and V 2) of the 16 S rRNA region from ~ 90 individuals from eight different geographical locations in India, viz., South India (Tamil Nadu, Andhra Pradesh and Telangana comprising 12, 11 and 12 samples, respectively), North India (Jammu \& Kashmir and Uttarakhand comprising 12 and 10 samples, respectively) and Eastern India (Jharkhand, West Bengal and Assam comprising 11, 14 and 10 samples, respectively), obtained by
employing Illumina MiSeq platform (Illumina, Inc, USA) was analyzed. A total of 2,766,655 reads were obtained after preliminary processing of the raw data. The length of the reads varied from 251 to 489 bases (Median length = 356). A stringent filtering criterion was used to process the initial data to discard the uninformative reads as well as the sequences containing two or more barcode sequences, or no barcodes, or no primer sequences or primer sequences in the middle of the reads. Further, the reads containing ambiguous bases (N), or a homopolymer stretch of more than 8 bases or reads either extremely small (<330 bases) or large (> 430 bases) were also discarded with the help of mothur software. Finally, a total of $2,558,248$ reads obtained after filtration were used to compare the 16 S rRNA sequences from different individuals.
The filtered sequence reads were imported to USEARCH and were dereplicated and sorted by size after discarding the singletons. The reads were then clustered at 97% identity to identify the species-level Operational Taxonomic Units (OTUs). In order to discard the chimeras generated during the amplification steps of the library preparation, the processed reads were compared to the GOLD database incorporated in USEARCH and the chimeras so detected were discarded. The filtered OTUs were serially numbered and stored in a new database. A total of 785 high quality unique OTUs were obtained in the current study. To identify the bacterial genera present in each sample, the filtered reads obtained were aligned by mothur, followed by BLAST at 80% identity cutoff against the 16 S Ribosomal Database Project. For the unifrac analysis, the OTUs were aligned in mothur using the 16 S rRNA Silva database as template and the aligned sequences were utilized to construct a phylogenetic tree using the generalized timereversible (GTR) model available in Fasttree which was subsequently used in FastUnifrac.
The preliminary results showed plenty of sharing of the OTUs among the individuals irrespective of their geographical location. This observation was also corroborated with AMOVA studies based on the abundance of bacterial genera which showed that the distribution of variance between the studied populations was much smaller as compared to the diversity within populations across the major geographical locations. It is known from earlier studies that the salivary microbiome could be affected by
climatic conditions, food habits, health status and ethnicity among others and therefore it is possible that the low sample size per population (10-12) was not sufficient to bring out the variations, in the tested samples. It is proposed to study microbial diversity in additional samples from these and other geographical locations in India by NGS strategy to better understand the salivary microbiome and to investigate whether there is a core microbiome for Indian populations
Project 2: Plant-Fungal Interaction studies in the Chilli - Colleotrichum Pathosystem.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

Colletotrichum truncatum (formerly called as C. capsici) is the most predominant species in India causing chilli anthracnose leading to both pre- and post-harvest losses. With the availability of whole genome sequence for chilli and six Colletotrichum species, the chilli - C. truncatum pathosystem offers an excellent model system for studies on the infection process and molecular interactions between the host and pathogen. The present study aims to identify and characterize pathogenicity genes in C. truncatum to get an insight into different aspects of its biology, lifestyle and host specificity through whole genome sequencing of the C. truncatum and random insertional mutagenesis.

We have earlier reported the de novo whole genome sequencing of C. truncatum employing the Illumina HiSeq platform ($2 \times 100 \mathrm{bp}$ reads) and that the sequence assembly consisted of 81 scaffolds with a total length of 55.3 Mb , equivalent to 460X coverage. For preliminary annotation of the assembly, scaffolds were aligned to the predicted gene set of well annotated C. higginsianum genome using BLASTX with threshold expect value of $1 \mathrm{e}^{-3}$ identifying 6,511 unique genes. In the other experiment, in order to identify pathogenicity genes in C. truncatum through forward genetics approach, random insertional mutagenesis of C. truncatum conidia by Agrobacterium tumefaciens mediated transformation (ATMT) was taken up using A. tumefaciens strain C58C1 harboring binary vector pBIN-GFP-hph and resultant fungal transformants were selected on potato dextrose agar (PDA) containing hygromycin. The mitotically stable transformants were screened for partial or complete loss of pathogenicity on chilli.

Details of progress made in the current reporting year (April 1, 2014- March 31, 2015)

a) Whole genome de novo sequence analysis

The whole genome sequence of C. truncatum was analysed by a computational method, Core Eukaryotic Genes Mapping Approach pipeline (CEGMA v. 2.5), to derive an initial set of reliable annotation of core genes with accurately identified exon-intron structures that helps in automated annotation of the genes in a draft assembly. The CEGMA core genes dataset, built using the NCBI euKaryotic clusters of Orthologous Groups (KOGs) database, consists of 458 core proteins that are present in a wide range of taxa. The CEGMA pipeline could also be used for assessment of completeness of the assembly based on coverage of orthologs of 248 core eukaryotic genes (CEGs). The genome assembly was found to be 94.76\% (235/248 CEGs covered) complete in CEGMA analysis. The missing KOGs (16/458) in CEGMA output could be identified through tBLASTn of C. gloeosporioides, C. graminicola and C. higginsianum gene models to C. truncatum genome with high alignment score ($<1 \mathrm{e}^{-10}, 78$ 100% of query coverage). The sequences of these reliable 458 core eukaryotic genes would be used in training ab-initio gene prediction programs for complete genome annotation in future.

A phylogenetic analysis was carried out for the genus Colletotrichum based on multilocus alignment of the five genes [internal transcribed spacer of rRNA (ITS), chitin synthase-1 (CHS-1), histone3 (HIS3), actin (ACT) and tubulin (TUB2)] in C. truncatum and 27 other Colletotrichum species using MEGA 6 by neighbor joining (NJ) method with 1000 bootstrap replicates. Monilochaetes infuscans was taken as an outgroup for the analysis (Fig. 1). C. truncatum (MTCC no. 3414) that infects chilli clustered together with the other isolate of C. truncatum that infects Phaseolus lunatus and was found to be closely related to gloeosporiodes clade. The position of C. truncatum in the cladogram would help in carrying out comparative genomics studies with the other sequenced species of Colletotrichum. Further analysis of the genomic data for gene annotation by ab initio gene prediction methods and functional characterization of pathogenicity genes would be carried out in future.

Figure 1. Phylogenetic tree of 27 Colletotrichum species obtained with Neighbour Joining method; the sequenced species are marked with red circles and the species of C. truncatum that was sequenced de novo in the present study is highlighted inside the green circle. The seven clades have been shown in gray scale.
b) Pathogenicity assay of fungal transformants

Around 1000 C. truncatum transformants generated through ATMT were screened for the complete or partial loss of pathogenicity on chilli. The conidia were collected from the transformant colonies growing in 24 well plates by flooding the wells with Milli-Q water and the conidial suspensions were used to inoculate C. annuum fruits at mature green stage for pathogenicity assay through wound and drop method. The fruits inoculated with Milli-Q water and wild type conidia were used as negative and positive controls, respectively.
There were several transformants that produced much smaller and inconspicuous lesions as compared to the wild type fungus. To confirm the loss of pathogenicity, secondary and tertiary
screenings were performed in which most of the transformants reverted back to pathogenic phenotype. Two of the transformants were found to retain the non-pathogenic phenotype in secondary and tertiary screens so far, whose molecular characterization would be carried out in future. Further, additional mutants with loss of pathogenicity would be characterized to understand host-pathogen interactions at the molecular level.

Publications

1. Sharma V and Nandineni MR (2014). Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems. Molecular Phylogenetics and Evolution 73: 10-17.

LABORATORY OF IMMUNOLOGY
 Understanding the role of Profilin to suppress tumorigenesis

\author{

Faculty	Sunil K Manna
PhD Students	S Adeel Husain Zaidi Raveendra Babu M Neeharika Verma Other Members Pankaj Gupta Collaborators Nune Raviprakash Binay Kumar Sahoo Biswadev Bishayi Tushar Basu Baul

}

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Technical Assistant
Project-Senior Research Fellow
Project-Junior Research Fellow
Calcutta University, Kolkata
NEHU, Shilong

Objectives

1. Understanding and regulation of inflammatory and tumorigenic responses;
2. Understanding and regulation of advanced glycation endproducts (AGE)-mediated lipogenesis; and
3. Understanding the molecular mechanism of autophagy.
Summary of work done until the beginning of this reporting year (upto March 31, 2014)

Advanced glycation end products (AGE) accumulate in diabetic patients and aged persons due to high amounts of 3- or 4-carbon derivatives of glucose. AGE increased lipid accumulation not only in liver cells, but also in other cell types as shown by Oil Red O staining. AGE-mediated upregulation of several transcription factors, like NF-кB, AP-1, NRF, SREBP, etc. Antioxidant like NAC or known activator troglitazone, an antidiabetic agent, except mangiferin, a c-glycosyl xanthone glucoside and a known polyphenol, were unable to protect AGE-induced activation of SREBP and subsequent lipid accumulation. Mangiferin not only inhibits AGE-mediated ROI generation that requires NF-кB activation, but also inhibits ERK and IKK activity, thereby suppression of SREBP activity and lipogenesis. Mangiferin has shown a double-edged sword effect to suppress AGE-mediated ailments by reducing ROI-mediated responses as antioxidant and inhibiting SREBP activation thereby lipogenesis, suggesting its potential efficacy against diabetes and obesity-related diseases.

We have investigated the molecular mechanism for the antioxidant property of mangiferin. Mangiferin blocks TNF-induced NF-кB and AP-1 activation in a dose dependent manner. Mangiferin, like known anti-oxidants inhibits TNF-induced reactive oxygen intermediates (ROI) generation, but was most potent in inhibiting NF-кB and AP-1 activation induced by TNF as well as other inflammatory agents like PMA, endotoxin, oleamide and $\mathrm{H}_{2} \mathrm{O}_{2}$. Mangiferin was found to increase the catalase activity in vitro and thereby reduced lipid peroxidation more potently than known inhibitor of catalase, aminotriazole (ATZ). Mangiferin and ATZ interact with the catalytic site of catalase, but in separate amino acid residues and the predicted amino acids were detected. The affinity of catalase is more with mangiferin than ATZ as detected from the free energy binding data. Hence mangiferin with its ability to inhibit NF-кB and to increase the catalase activity may prove to be a potent drug for anti-inflammatory and anti-oxidant therapy.
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

1) Profilin-PTEN interaction suppresses NFkappa B activation via inhibition of IKK phosphorylation.

The molecular mechanism of Profilin for its tumor suppressor activity is still unknown. NF-кB is known to activate many target genes involved in cell proliferation. In this study, we provide evidences that support the involvement of Profilin in regulation of NF-kB, which might repress the tumorigenic response. Transient transfection

Figure 1. Effect of Profilin on NF-кB activation. HuT-78 and MB-231 cells were transfected with vector or Profilin1 for 6 h followed by culture for 24 h . The nuclear extracts (NE) prepared and NF-кB DNA binding was assayed by gel shift assay (A). Stable Profilin overexpressing and vector control are generated in MB-231 cell lines. Western blot and RT-PCR further confirm Profilin overexpression in these cells (B). Parental and Profilin-stable MB-231 cells were treated with varying concentrations of TNF for 1 h . NE were prepared and assayed for NF-кB DNA binding activity (C). Parental and Profilin-stable MB-231 cells were stimulated with 1 nM TNF α for different time. NE and CE (cytoplasmic extracts) were prepared and IkBa was measuser from CE and p65 from CE and NE by Western blot (D). Parental and Profilinstable cells were transiently transfected with $I K K \beta$, $p 65$, or $I K K \beta-D N$ constructs with reporter construct NF-кB-SEAP and GFP. After 12 h , GFP positive cells were counted. Cells were then treated with TNF for 30 min. NE were prepared and assayed for NF-кB DNA binding by gel shift assay (E). MB-231 cells were transiently transfected with Profilin and immunofluorescence staining using antibody of Profilin (green) and PTEN (red) was done. The right panels are the overlay of Profilin, PTEN and nuclear 4'phenylindole (DAPI; blue) staining of the same field (A). Scale bar, $10 \mu \mathrm{~m}$ (F). Different regions of Profilin interacting with PTEN (blue), Actin (red) and proline rich region (green) is shown (G).
of profilin shows the decreased amount of NFκB DNA binding either in high basal or induced activity of NF-кB (Fig.1A). This prompts us to profilin-stable cells and breast tumor cells (A231) cells were used to make this stable cell generation as shown by Western blot and RTPCR (Fig.1B). Profilin overexpressing cells show low basal activity of IKK, high amount of cytoplasmic $\mathrm{I}_{\kappa} \mathrm{Ba}$ and p65, and low nuclear NF-кB DNA binding activity (Fig.1C \& 1D). To determine the mechanism of Profilin-mediated suppression of NF-кB, parental and Profilin-stable cells were
transfected with IKK β full-length (IKK β), IKK β kinase dead domain (IKK $\beta-\mathrm{DN}$), or $p 65$ and then stimulated with TNF. The $I K K \beta$ or $p 65$ transfected cells showed increase in the NF-кB DNA binding activity and TNF increased this activation marginally in parental cells. In Profilin-stable cells, Profilin did not suppress NF-кB activation when transfected with p65 or IKK β, with or without TNF stimulation (Fig.1E). This suggests that Profilin might be acting at the upstream level of p65. Co-localization (Fig.1F) and in silico studies (Fig.1G) suggest that Profilin interacts
with a protein phosphatase, PTEN and protects it from degradation. In turn, PTEN physically interacts and maintains low phosphorylated state of IKK complex and thereby suppresses NF-кB signaling. Thus, Profilin overexpressing cells
show decrease in NF-кB activation mediated by most of the inducers and potentiates cell death by repressing NF-кB-dependent genes involve in cell cycle progression.

Figure 2. Effect of Profilin on chemotherapeutic agents mediated cell death. MDA-MB-231 cells were transiently transfected with Profilin 1 for 24 h , followed by treatment with different concentrations of doxorubicin for 48 h . The cell viability was assayed by MTT dye and the absorbance was taken at 570 nm and indicated as percentage of cell death (A). MDA-MB-231 cells were prepared for Profilin 1 stable cells (Profilin-stable). Parental and Profilin-stable cells were subjected to immunocytochemistry to detect the amount of Profilin using anti-Profilin antibody followed by FITC-conjugated secondary antibody (B). Parental and Profilin-stable cells were made scratch at 90% confluency with sterile needle and images were captured at different time intervals in phase contrast microscope (C). Parental and Profilin-stable MB-231 cells were treated with paclitaxel, vinblastine, doxorubicin and oleandrin for 48 h . The amount of PARP was determined from WCE of these cells with similar treatments and detected by Western blot (D). Parental and Profilin-stable cells were treated with ATRA, AraC, doxorubicin, vinblastine, paclitaxel, or vincristine for 6 h . Cells were washed with PBS and pelleted. Nuclear extracts (NE) were prepared and used to measure NF-кB DNA binding by gel retardation (E). Parental and Profilin-stable cells were treated with 200 nM Paclitaxel in a time dependent manner. Cells were washed and extracted for WCE. $100 \mu \mathrm{~g}$ WCE protein was then probed for PARP, cleaved caspase 8 and 3 by Western blot (F). Cell death was detected by Live \& Dead Cytotoxicity assay kit from similar treatment and detected by Calcein (for live cells, stained as green) and Ethidium homodimer (for dead cells, stained as red) stained cells (G). The amount of p53 and Sp1 DNA binding was determined from $8 \mu \mathrm{~g}$ of NE extracted from parental and Profilin-stable cells treated with doxorubicin, paclitaxel and benzofuran for 6 h by gel shift assay (H). The amount of Mdm2 was determined by Western blot and RT-PCR from same treatment (I).

Mutation in Profilin is known to cause Familial amyotrophic lateral sclerosis (ALS), a neurodegenerative disorder resulting from motor neuron death. This suggests there might be a possibility that alterations in other functions of Profilin may contribute to the tumorigenesis. As Profilin is downregulated in human breast tumors and correlates with low PTEN expression, we propose that mutation or loss of Profilin function may drive mammary cells for tumor progression. Modulating the expression level of Profilin may be useful in mitigating the tumorigenic growth and can be targeted along with other agents that are used against different pathways for effective combination therapy.
2) Profilin potentiates chemotherapeutic agents mediated celldeath viasuppression of NF-kappaB and upregulation of p53.
Profilin acts as tumor suppressor. The mode of action to exert this effect is somehow unknown. Several chemotherapeutic agents used till date either have unfavorable side effects or developing resistance. In this study, we have investigated the mechanism by which Profilin negatively regulates cell survival. As, NF-kB and p53 are the key players in apoptosis, we are detecting any role of Profilin in their regulation. Role of Profilin in chemotherapeutic agents mediated cells death was determined by several apoptotic assays, such as MTT cell viability assay (Fig.2A), cleavage of PARP (Fig.2D) and caspases (Fig.2F) are determined by Western blot; morphology is visualized by phase contrast microscope; nuclear fragmentation and dead cells are determined by flow cytometer and fluorescence microscope (Fig.2G). Transcription factors, like NF-kB, p53 and Sp1 are determined by gel shift assay and their dependent genes are by RTPCR and reporter gene luciferase assay. Profilin potentiates several chemotherapeutic-agents mediated cell death. Profilin overexpression suppressed migration and invasiveness of breast cancer cells (Fig.2C). Paclitaxel and vinblastine-
mediated NF-кB (Fig.2E) and NF-кB-dependent genes activation was completely inhibited in Profilin overexpressing cells, as determined by the amount of profilin in these cells (Fig.2B). The increased p53 DNA binding activity was potentiated in Profilin overexpressing cells (Fig.2H). The Sp1 DNA binding followed by Mdm2 expression was completely abrogated in Profilin overexpressing cells (Fig.2H \& 21). Thus, Profilin suppress NF-кB activation and increase p53 activity by suppressing Sp 1 and thereby, Mdm2 expression. Profilin synergizes with chemotherapeutic drugs to induce tumor cell death by attenuating NF-кB and upregulating p53. Thus, modulation of Profilin may be useful for effective combination therapy.

Publications

1. BasuBaulTS,KunduS,LindenA,Raviprakash N, Manna SK and Guedes da Silva MF (2014). Synthesis and characterization of some water soluble Zn (ii) complexes with (E)-N-(pyridin-2-ylmethylene)arylamines that regulate tumour cell death by interacting with DNA. Dalton Transactions. 43: 1191-1202.
2. Mahali SK, Verma N and Manna SK (2014). Advanced glycation end products induce lipogenesis: regulation by natural xanthone through Inhibition of ERK and NF-кB. Journal of Cellular Physiology 229: 19721980.
3. Raviprakash N and Manna SK (2014). Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors. British Journal of Pharmacology 171: 3339-3351.
4. Ghosh C, Prakash NR, Manna SK and Bishayi B (2015). Presence of toll like receptor-2 in spleen, lymph node and thymus of Swiss albino mice and its modulation by Staphylococcus aureus and bacterial lipopolysaccharide. Indian Journal of Experimental Biology 53: 82-92.

LABORATORY OF MAMMALIAN GENETICS
 Epigenetic mechanisms underlying developmental pathways

Faculty	Sanjeev Khosla	Staff Scientist
Ph D Students	Garima Sharma	Senior Research Fellow
	Amitava Basu	Senior Research Fellow
	Rachana Roshan Dev	Senior Research Fellow
	Imtiyaz Yaseen	Senior Research Fellow
	Thushara Thamban	Senior Research Fellow
	Ramisetti Rajeev	Junior Research Fellow
	Viplove V Agarwaal	Junior Research Fellow
		(Since Jul. 2014)
Other Members	Archana Tomar	Bioinformatician
	M Srilalitha	Technical Officer
	Vaishnavo Pai	Project Associate
		(Till Mar. 2015)
	Prakruti Singh	Research Associate
	Mudasir Rashid	Project-Junior Research Fellow
	Bimola Khongwir	Project-Junior Research Fellow
		(Since Jan. 2015)
	Gayatri Ramakrishna	ILBS, New Delhi
Collaborators	Shekhar Mande	NCCS, Pune
	Rakesh Mishra	CCMB, Hyderabad
	Vinay K Nandicoori	NII, New Delhi
	Sharmistha Banerjee	UoH, Hyderabad

Project 1: DNMT3L: Role in Development
Summary of work done until the beginning of this reporting year (upto March 31, 2014)
Previous work from our laboratory has examined the reason for loss of DNA methylation at DNMT3L promoter in cancer samples. Based on reporter gene assays we showed presence of a PRE with this promoter region. In addition, we showed DNMT3L to be involved in nuclear reprogramming.
Details of progress made in the current reporting year (April 1, 2014- March 31, 2015)

We uncovered the role of DNMT3L in nuclear reprogramming when HeLa cells overexpressing DNMT3L were found to have undergone nuclear reprogramming gradually and showed morphological changes only in the $20^{\text {th }}$ generation post transfection of DNMT3L construct (Gokul et. al. 2009; Epigenetics 4: 322-329).
When transgenic Drosophila that ectopically expressed DNMT3L (carrying Tubulin-Gal4
driver) were maintained for more than $5^{\text {th }}$ generations, some of the flies showed melanotic tumors. None of these larvae with melanotic tumors survived beyond the larval stages. All adult flies had melanotic tumors and were normal and fertile. In all the subsequent generations (maintained till G20), $5-8 \%$ of the $3^{\text {rd }}$ instar larvae consistently showed melanotic tumors and did not survive whereas the rest of the progeny were normal and fertile. Real-Time RT-PCR analysis showed that the expression of DNMT3L remained constant in all the generations from G1 to G5 suggesting that the appearance of the larvae with tumors in $5^{\text {th }}$ generation progeny was not due to an abrupt change in its expression. This was true for all DNMT3L transgenic Drosophila lines as also with the use of other Gal4-drivers (Actin and Daughterless).

Since the melanotic tumors were present in the hemolymph the influence of DNMT3L expression on the number and types of hemocytes in the hemolymph was examined by comparing the number of hemocytes in control UAS-DNMT3L
flies and $5^{\text {th }}$ generation Tubulin-DNMT3L flies with or without melanotic tumors by staining with Phalloidin. The number of proliferating hemocytes were significantly more in Tubulin-DNMT3L flies (both with and without melanotic tumors; Fig.

1A, B). The types of hemocytes present in the hemolymph was also markedly different with the Tubulin-DNMT3L flies showing a large numbers of lamellocytes (Fig. 1C).

Figure 1. Ectopic DNMT3L expression affects the number and types of hemocytes. (A) Florescent microscopic images of Phalloidin stained hemocytes from the control and the DNMT3L expressing transgenic flies in the fifth generation. A significant increase in the number of hemocytes in the DNMT3L expressing transgenic flies expressing Dnmt3L was observed and is graphically represented in (B). G5-Control- $5^{\text {th }}$ generation transgenic UAS-DNMT3L flies (without any Gal4 driver). G5-Tub-3L: $5^{\text {th }}$ generation transgenic flies expressing DNMT3L with Tubulin-Gal4 driver. G5-Tub-3L-tumor: $5^{\text {th }}$ generation transgenic flies expressing DNMT3L with melanotic tumors. The error bars represent Standard Deviation (S.D.). *indicate significant difference (Student's test, *** - p < 0.001). (C) Phosphohistone 3 (PH3) staining of the hemolymph prepared from $5^{\text {th }}$ generation control and DNMT3L expressing larvae (with melanotic tumors).

Project 2: Host epigenetic response to infection

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

We have previously identified a putative DNA methyltransferases (DNMTs), Mtbmeth1, which had the ability to be secreted out of a mycobacterial cell and localize to the THP1 nucleus in a transient transfection assay. Mtbmeth1 protein was also found to be phosphorylated.
Details of progress made in the current reporting year (April 1, 2014- March 31, 2015)

To determine the specificity of DNA binding activity of Mtbmeth1 protein (Rv2966c), EMSA analysis was done with $100-300 \mathrm{bp}$ sonicated THP1 DNA fragments. Rv2966c-bound DNA
fragments in the EMSA gels were excised, cloned and sequenced. A few identified DNA sequences from them were PCR amplified and used in EMSA analysis. Rv2966c showed binding to all of them and as expected, phosphorylated Rv2966c bound DNA much more strongly than the unphosphorylated form (Fig. 2A). But when pBluescriptSK MCS was used as a DNA substrate, negligible binding was observed (Fig. 2A), suggesting that Rv2966c was binding to specific DNA sequences.

DNA methylation analysis was done by performing Bisulfite sequencing on in vitro Rv2966c methylated DNA fragments (from the H2AFY2 gene) to examine whether Rv2966c was capable of methylating these specific DNA sequences. As compared to control (incubation

Figure 2. Rv2966c binds and methylates non-CpG cytosines within specific DNA sequences from the THP1 genome. A.) Rv2966c binds specific DNA sequences. α^{32} P-labelled DNA probes were prepared for three fragment as indicated and control pBluescript vector. EMSA was done with both unphosphorylated and PknA/PknB phosphorylated proteins in the presence of poly (dl-dC). pbSKMCS is the probe from the pBluescript vector. Brackets indicate the band corresponding to the probe; Arrow indicates the DNA-protein complex band. B.) Bisulfite analysis of in vitro Rv2966c methylated H2AFY2 gene fragment. 13 or more clones were screened for each sample. Control indicates incubation with BSA. Red circles represent CpG dinucleotides. Non-CpG cytosines in $\mathrm{CpA}, \mathrm{CpC}$ and CpT dinucelotides are represented by rectangles. Filled symbols indicates methylation of cytosine in the dinucleotide. C.) Real-time RT-PCR was performed for the indicated genes (mentioned below the X-axis) on RNA isolated from uninfected and M. tuberculosis H37Rv infected (48 hrs post infection) THP1 macrophages. To take into account the effect of culturing on expression the levels were normalised against the expression of these gene at the time of infection (0 hrs). Open bars indicate expression in uninfected cells while filled bars are for infected cells. The experiment was done at least thrice in duplicates. The error bars represent Standard Deviation (S.D.). * indicate significant difference (Student's test, * $\mathrm{p}<0.05$).
with BSA), incubation with both phosphorylated (PknA/PknB) and unphosphorylated Rv2966c protein showed significant methylation. Surprisingly, instead of CpG methylation (denoted by red circles), significant amount of non-CpG methylation (denoted by boxes), specifically in CpA and CpT dinucleotides was observed (Fig. 2B).
To examine the functional significance of the observed non-CpG methylation during infection, expression of some of these genes was examined upon M. tuberculosis H37Rv infection of THP1 cells by Qualitative Real-time RT-PCR. As can be seen in figure 2C, significant decrease in expression was seen for the H2AFY2and GRK5 genes but not for PET112L and ZNF64.

Work is also ongoing in the laboratory on two mycobacterial proteins that can work as DNA demethylase and histone methyltransferase in the host cell.

Publications

1. Basu A, Dasari V, Mishra RK and Khosla S (2014). The CpG island encompassing the promoter and first exon of human DNMT3L gene Is a PcG/TrX response element (PRE). PLoS One 9:e93561.
2. Sharma G, Upadhyay S, Srilalitha M, Nandicoori VK and Khosla S. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone $\mathrm{H} 3 / \mathrm{H} 4$ binding. Nucleic Acids Research (In press).

LABORATORY OF MOLECULAR CELL BIOLOGY Signal transduction pathways in macrophages and host-pathogen interaction in tuberculosis

Faculty	Sangita Mukhopadhyay	Staff Scientist
PhD Students	Nazia Parveen	Senior Research Fellow (Till Sep. 2014)
	Atul Udgata	Senior Research Fellow
	Gourango Pradhan	Senior Research Fellow
	Parul Singh	Senior Research Fellow
	Vishwanath Jha	Senior Research Fellow
	D Komal Chandreshkumar	Junior Research Fellow
	Shruti Srivastava	Junior Research Fellow
	KM Rohini	Junior Research Fellow
		(Since Aug. 2014)
Other Members	R Nagender Rao	Scientist
	Niteen Pathak	Senior Technical Officer
	Philip Raj Abraham	ICMR Research Associate
	Asma Ahmed	DBT Research Associate
	Nidhi Shrivastava	(Till Jun. 2014)
	DBT-Research Associate	
	Khalid Hussain Bhat	(Since Jan. 2015)
	Rahila Qureshi	Research Associate
	Susiharan GS	Project-Junior Research Fellow
	Project Assistant	
	(Till Feb. 2015)	
	Vijaya Valluri	BPRC, Hyderabad
Collaborators	Sudip Ghosh	NIN, Hyderabad
	SE Hasnain	IIT, Delhi
	Jala Ramachandra Reddy	IICT, Hyderabad
	RBN Prasad	IICT, Hyderabad

Objectives

Signal transduction pathways in macrophages regulating its innate-effector functions and mechanisms by which Mycobacterium tuberculosis interferes with macrophage-signaling cascades to modulate host's protective responses.

Project 1: Examining virulence mechanism of ESAT-6 protein.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

Mycobacterium tuberculosis is a highly successful pathogen that has evolved several mechanisms to manipulate the host immune regulatory network. Despite a host of studies highlighting modulation of immune responses by ESAT-6, there have not been many that identified host
proteins interacting with ESAT-6. Therefore, we hypothesized that the crucial role played by ESAT-6 in the virulence of mycobacteria could be due to its interaction with some host cellular factors. Thus, a yeast two-hybrid screen was set up to identify host protein(s) that interacts with ESAT-6.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
a. ESAT-6 interacts with human $\beta 2 \mathrm{M}$:

For yeast two-hybrid (Y2H) screening, ESAT-6 cloned in the bait vector pGBKT7 was used to screen a human leukocyte cDNA library cloned into the prey vector pACT2. The Mat-a strain AH109 harboring the bait vector pGBKT7-ESAT-6 was mated with Mat- α strain Y187 transformed
with prey library plasmid and the mating mixture was plated on QDO plates (SD/-Ade/-His/-Leu/-Trp) for high stringency of selection. The prey plasmids, rescued from the colonies that appeared on selection plates, were sequenced using 3' AD Sequencing Primer and were identified by querying these sequences against the NCBI GenBank database using the MegaBlast program. One of these cDNA sequences in the prey plasmid was found to have very high similarity with human beta-2-microglobulin ($\beta 2 \mathrm{M}$) (Fig. 1A). The physical interaction between ESAT6 and $\beta 2 \mathrm{M}$ was confirmed by a co-purification assay where ESAT-6 was cloned into the first multiple cloning site (MCS) with an N-terminal His-tag and $\beta 2 \mathrm{M}$ cDNA from the prey plasmid was cloned into the second MCS without any tag in a dual expression vector pETDuet-1. When the over-expressed His-tagged ESAT-6 protein was purified from the transformed Escherichia coli using TALON affinity binding resin, $\beta 2 \mathrm{M}$ was found to be co-purified along with Histagged ESAT-6, indicating a positive interaction between ESAT-6 and $\beta 2 \mathrm{M}$. The GST pull-down and co-immunoprecipitation assays indicated that ESAT-6 could interact with the $\beta 2 \mathrm{M}$ naturally expressed in macrophages (Fig. 1A). Physical interaction of ESAT-6 and $\beta 2 \mathrm{M}$ was further confirmed by using surface plasmon resonance, the Kd value of the ESAT-6: $\beta 2 \mathrm{M}$ complex as determined from the surface plasmon resonance data was $1.03 \times 10^{-6} \mathrm{M}$. ESAT-6 in complex with CFP-10 is also capable of interacting with $\beta 2 \mathrm{M}$ and the C-terminal six amino acid residues (9095) of ESAT-6 are found to be crucial for this interaction. CFP-10 and ESAT-6 stabilizes each other through extensive hydrophobic interactions spanning their core helix-loop-helix structure, while the free flexible C-terminal end of ESAT-6 is available for interaction with $\beta 2 \mathrm{M}$ and possibly other host proteins. The ESAT-6: $\beta 2 \mathrm{M}$ interaction is not affected by high salt concentration and pH . $\beta 2 \mathrm{M}$ is an integral part of the functional MHC-I molecules, and our data suggest that ESAT-6 binds only to free $\beta 2 \mathrm{M}$, but not to that already in complex with HLA-I heavy chain.
b. ESAT-6 or ESAT-6:CFP-10 is trafficked into the ER:

In order to have a pathophysiological role in the host-pathogen interaction, ESAT-6 and/or ESAT-6:CFP-10 must find its way to the cellular compartments where $\beta 2 \mathrm{M}$ is present. $\beta 2 \mathrm{M}$ is known to be present in high concentration
within endoplasmic reticulum (ER) where it is synthesized and undergoes necessary posttranslational modifications and associates with the alpha chain of the MHC-I, as well as other class I like molecules like CD1 and hemochromatosis protein (HFE) that are transported to the cell surface via the Golgi apparatus. To test whether ESAT-6 is able to enter the ER network, THP1 macrophages were incubated for 2 hours with FITC-labelled ESAT-6 or ESAT-6:CFP-10 and their localization was tracked along with the ERspecific marker calnexin by confocal microscopy. The ESAT-6:CFP-10 was found to be present in the ER (Fig. 1B). Similarly, FITC-labelled ESAT-6 alone was found to be present in the ER-tracker dye-positive regions of $\mathrm{KG}-1$ dendritic like cells. We next over-expressed FLAG- or GFP-tagged ESAT-6 in cells in an attempttomimic physiological conditions where ESAT-6 is secreted directly into the cytosol. We transfected HEK-293 cells with pcDNA 3.1(+)-FLAG-esat-6 and staining with anti-FLAG Ab indicated presence of ESAT6 in the calnexin-positive ER compartments (Fig. 1C) suggesting that intracellular ESAT-6 can also find its way into the ER. Also, we were able to pull down the ESAT-6: $\beta 2 \mathrm{M}$ complex from the enriched ER fraction of HEK-293 cells transfected with pEGFP-C1-esat-6 but not from cells transfected with the vector alone, indicating that ESAT-6: 32 M complex was present inside the ER (Fig. 1D). Thus, once translocated to the ER, ESAT-6:CFP-10 can interact and sequester $\beta 2 \mathrm{M}$ and thereby reduce the availability of free $\beta 2 \mathrm{M}$ to form complex with HLA class I molecules. In such situations, the surface levels of both $\beta 2 \mathrm{M}$ and MHC molecules are likely to be decreased. Expectedly, when THP-1 macrophages were incubated with recombinant ESAT-6:CFP-10 protein, both surface $\beta 2 \mathrm{M}$ and MHC levels were decreased. The MTT viability assay indicated that reduction in surface $\beta 2 \mathrm{M}$ levels was not due to cell cytotoxicity of the ESAT-6:CFP-10 complex. ESAT-6:CFP-10 also did not affect intracellular $\beta 2 \mathrm{M}$ at the protein and mRNA level. The surface expression of other cell surface markers like Mac-1, TLR4, MHC-II and CD14 molecules were found to remain unchanged in ESAT-6:CFP-10 treated cells which indicated that the reduction of surface $\beta 2 \mathrm{M}$ levels was not due to general trafficking defects but possibly due to physical sequestration of $\beta 2 \mathrm{M}$ by ESAT- 6 inside the ER. These data together suggest that ESAT6 is not only able to enter the ER but also can interact with ER-resident $\beta 2 \mathrm{M}$. Interestingly, the
sandwich ELISA indicate that the ESAT-6: 32 M complex can also exist in pathophysiological settings like pleural fluid of individuals suffering from pleural TB.
c. ESAT-6:CFP-10 treatment affects expression of HLA class I molecules:

It is known that $\beta 2 \mathrm{M}$ molecules form a trimolecular complex with newly synthesized HLA molecules and antigenic peptide which is transported to the surface to present the peptide to its cognate T cell receptor (TCR). We next checked whether less amount of MHC-1: 12 M pool is available in cells treated with ESAT-6:CFP-10. A pull down assay with $\mathrm{W} 6 / 32$ (a monoclonal Ab that recognizes a conformation specific epitope on the HLA class I molecules only when associated with $\beta 2 \mathrm{M}$), yielded lesser amount of $\beta 2 \mathrm{M}$ complexed with MHC-1 in ESAT-6:CFP-10treated cells, indicating that less amount of $\beta 2 \mathrm{M}$ was complexed with class I molecules in ESAT-6:CFP-10-treated cells compared to untreated as well as those treated with ESAT-6 CC :CFP-10 (Fig. 1E). When the surface expression of $\beta 2 \mathrm{M}$ complexed HLA class I molecules was measured with the help of $W 6 / 32$, expectedly we observed a significant decrease in staining in ESAT-6:CFP-10-treated but not in ESAT-64C:CFP-10treated cells (Fig. 1F). Using HC-10 monoclonal Ab that detects only the free HLA-I heavy chain molecules not complexed with $\beta 2 \mathrm{M}$, we observed that the levels of $\beta 2$ M-free HLA class I molecules were increased on the surface (Fig. 1 Gi) as well as intracellularly (Fig. 1Gii) after treatment with ESAT-6:CFP-10. These data together indicate that ESAT-6:CFP-10 can sequester free $\beta 2 \mathrm{M}$ in ER resulting in reduced MHC-I: B 2 M complex formation and consequently increasing the levels of free HLA class I heavy chain molecules.
d. ESAT-6:CFP-10 inhibits MHC-I presentation of SIINFEKL peptide derived from cytoplasmic and soluble ovalbumin:

When thioglycolate-elicited mouse peritoneal macrophages from C57BL/6 mice ($\mathrm{H}-2 \mathrm{~K}^{\mathrm{b}}$) were cytosolically loaded with native ovalbumin (OVA) and the levels of ovalbumin-derived SIINFEKL peptide (OVA257-264) presented by MHC-I$\beta 2 \mathrm{M}$ complex was examined by flow cytometry in the absence or presence of ESAT-6:CFP-10 or ESAT-6 6 C :CFP-10 complex, the surface levels of SIINFEKL in complex MHC-I- 32 M complex were found to be significantly reduced in cells treated with ESAT-6:CFP-10 protein when compared
with OVA-pulsed cells treated with either medium or ESAT-6AC:CFP-10 protein indicating that ESAT-6 reduces class I-mediated antigen presentation (Fig. 1H). We also confirmed the staining experiment with an IL-2 assay as a read out for T cell function (Fig. 11). The results show that the decreased SIINFEKL staining in cells treated with ESAT-6:CFP-10 actually correlates with a functional defect in presentation of OVA antigen. ESAT-6:CFP-10 also reduces crosspresentation of SIINFEKL peptide derived from the soluble ovalbumin on MHC-I: $\Delta 2 \mathrm{M}$ complex (Fig. 1J).

Future plan

We plan to crystallize ESAT-6- $\beta 2 \mathrm{M}$ complex for designing of small molecule inhibitors and to test the lead molecules in animal model of tuberculosis infection.

Project 2: Studying the TLR2 signaling pathways responsible for induction of anti- and pro-inflammatory responses in tuberculosis.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

The toll-like receptors (TLRs) belong to the family of receptors known as Pattern Recognition Receptors or PRRs, which recognize PAMPs (Pathogen Associated Molecular Pattern). TLRs are shown to be involved in invoking both pro- as well as anti-inflammatory responses. But how these responses are activated and regulated during mycobacterial infection is not well understood. Previous work carried out by us revealed that two PPE proteins of Mycobacterium tuberculosis, PPE17 and PPE18, bind to TLR2. While interaction of PPE17 with TLR2 LRR domain 16~20 induces TNF- α and pro-inflammatory-type responses, binding of PPE18 with TLR2 LRR domain 11~15, results in generation of IL-10 and anti-inflammatory immune responses (Nair et al. J. Immunol. 2011; Bhat et al. J. Biol. Chem. 2012). In the present study, we initiated experiments to understand the mechanism of this differential signalling triggered by PPE17 and PPE18 downstream of TLR2.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

After the engagement of TLR2 with its ligand, adaptor molecules such as MyD88, IRAK1, IRAK-4, and TRAF-6 are recruited at the cytosolic domain or TIR domain of the receptor.

Figure 1. ESAT-6/ESAT-6:CFP-10 protein interacts with $\beta 2 \mathrm{M}$ and inhibits class I antigen presentation function of macrophages. Yeast two-hybrid assay followed by GST pull-down and co-immunoprecipitation assay indicates a positive interaction between ESAT-6 and $\beta 2 \mathrm{M}$ (A). The confocal microscopy suggests that exogenously added ESAT-6:CFP-10 (B) as well as intracellularly expressed ESAT-6 (C) gain access into calnexin-positive ER and interacts with $\beta 2 \mathrm{M}$ present in the ER as ESAT-6: 32 M complex was pulled-down from the enriched ER fraction of HEK-293 cells transfected with pEGFP-C1-esat-6 but not from cells transfected with the vector alone (D). Thus less amount of $\beta 2 \mathrm{M}$ was complexed with HLA class I molecules in ESAT-6:CFP-10-treated macrophages compared to untreated as well as those treated with ESAT-6AC:CFP-10 as revealed by co-immunoprecipitation assay using W6/32 (a monoclonal antibody that recognizes a conformation specific epitope on the HLA class I molecules only when associated with $\beta 2$ M) (E) resulting in reduced HLA class I- $\beta 2 \mathrm{M}$ complex formation on THP-1 macrophages (F) and consequently increasing the levels of levels of $\beta 2$ M-free HLA class I molecules on the macrophage surface (Gi) as well as intracellularly (Gii). Exogenously added soluble ESAT-6:CFP-10 complex was found to reduce the amount of SIINFEKL peptide presented by hypertonically loaded cytoplasmic ovalbumin (H) as well as cross-presented ovalbumin (I) affecting the class I antigen presentation to CD8 T cells (J).

We then hypothesized that whether there was any difference in recruitment of these adaptor molecules (MyD88, IRAKs etc.) as well as activation of downstream kinases such as ERK $1 / 2$ and p38 MAPK. We found that upon treatment with recombinant PPE17 (rPPE17), there was more enrichment of MyD88 when pulled down with IRAK-1 as compared to rPPE18. Also there was a change in the localization of IRAK3 (an inactive kinase and a member of the IRAK family) when macrophages were treated with these two proteins. It was observed that in macrophages
treated with either medium (control group) or rPPE18, IRAK3 was spread throughout the cell, and present both in the cytoplasm and in the nucleus. However, in macrophages treated with rPPE17, IRAK3 had redistributed, and localized predominantly in the cytoplasm than in the nucleus. PPE17 when presented in the context of the whole bacillus is also able to ship IRAK3 from the nucleus to the cytosol corroborating the in vitro observed data using purified protein. The rPPE17 activated ERK 1/2, but rPPE18 induced p38 MAPK activation.

The polypeptide sequence indicates that IRAK3 has a nuclear export signal. The Leptomycin B (a known inhibitor of nuclear export) prevented export of IRAK3 from the nucleus to the cytosol in PPE17-treated macrophages but did not affect intracellular distribution of IRAK3 in PPE18treated macrophages. These results indicate that the redistribution of IRAK3 by PPE17 requires nuclear export machinery. Also, the activation of ERK $1 / 2$ and TNF- α by PPE17 was inhibited by Leptomycin B indicating that the export of IRAK3 into the cytoplasm was necessary for inhibition of p38 MAPK activity with simultaneous activation of ERK $1 / 2$ and TNF- α. All these data together suggest that two separate pathways are triggered by PPE17 and PPE18 resulting in subsequent induction of pro-and anti-inflammatory responses downstream of TLR2.

Future plan

We intend to study in detail the TLR2 signaling cascades responsible for regulation of anti- and pro-inflammatory responses in tuberculosis and accordingly designing of small molecule inhibitors
to specifically inhibit anti-inflammatory signaling known to favor M. tuberculosis infection.

Publications

1. Abraham PR, Latha GS, Valluri VL and Mukhopadhyay S (2014). Mycobacterium tuberculosis PPE protein Rv0256c induces strong B cell response in tuberculosis patients. Infection, Genetics and Evolution 22: 244-249.
2. Sreejit G, Ahmed A, Parveen N, Jha V, Valluri VL, Ghosh S and Mukhopadhyay S (2014). The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2-microglobulin (ß2M) affecting antigen presentation function of macrophage. PLoS Pathogens 10: e1004446; doi: 10.1371/ journal.ppat. 1004446.
3. Bhat KH and Mukhopadhyay S. Macrophage takeover and the host-bacilli interplay during tuberculosis. Future Microbiology (In press).

LABORATORY OF MOLECULAR GENETICS

(Explanatory note: The Laboratory of Molecular Genetics, which also includes the Centre of Excellence (CoE) in Silkmoth Genetics and Genomics, was headed by CDFD's faculty member Dr. J Nagaraju who unfortunately passed away in December 2012. Subsequently, the activities of his erstwhile group have been continued by Dr K P Arun Kumar and Dr V V Satyavathi with their respective colleagues, whose individual reports are given below. The Director of CDFD is the designated coordinator of the CoE).

A. Report of Dr KP Arun Kumar's group

Faculty	KP Arun Kumar
PhD Students	Asha Minz S Suresh Kumar G Gopinath
Other Members	S Annapurna Bhavani R Lakshmi Vaishna CVE Rajendra Srikeerthana K
	Sasi Bhushan S
	Kushal Ravindra Kekan Adarsh K Gupta
	Saikat Chakraborty T Vidya
	Srikakolapu M CH Shekhar

Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Technical Officer
Technical Assistant
Research Associate
Research Associate
(Till Dec. 2014)
Research Associate
(Since Oct. 2014)
Project Assistant
Project Assistant
(Till Jul. 2014)
Project-Junior Research Fellow
Project-Junior Research Fellow
Project-Junior Research Fellow

Objectives

1. Studies on silkworm sex chromosome dosage compensation through large-scale transcriptome sequence analysis.
2. The evolutionary dynamics of B. mori Z chromosome in relation to autosomes and sex chromosomes of other animal species.

The progress made in the projects related to sex chromosome dosage compensation in B. mori and evolutionary dynamics of sex chromosome is reported here.
Summary of work done until the beginning of this reporting year (upto March 31, 2014)

- Comparison of gonad-specific genes reveals obvious sexual dimorphism: The Z chromosome is defeminized in silkworm.
* Characterization of antiviral and antibacterial activity of Bombyx mori seroin proteins.
* bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori.
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
Objective 1: Studies on silkworm sex chromosome dosage compensation through large-scale transcriptome sequence analysis.
Gene regulation by sex chromosome dosage compensation (DC) prevents the detrimental effects of gene dose differences between sexes due to uneven number of sex chromosomes. Several species have been studied for the occurrence of this biological phenomenon and diverse epigenetic DC mechanisms have been discovered in several male heterogametic systems (XX/XY) as dissimilar as flies, mammals, worms and much progress has been made to understand their evolutionary basis. Gene dose
difference between the sexes is often regulated by the mechanism of DC to normalize the expression of homogametic and heterogametic sex chromosomes to that of autosomes. Studies on ZW systems showed a general lack of DC in birds and reptiles, complete and incomplete DC in the moth species Manduca sexta and Plodia interpunctella respectively. However, research on the domesticated silkworm, Bombyx mori has yielded contradicting results thus far; showing no compensation in the previous studies and a possible existence in a recent report. These observations come from analyses ranging from studies on a confined set of genes to global gene expression studies using microarray.

In this study, we have generated whole transcriptome shotgun sequencing (RNA-seq) data of three early-stage sexed embryos and fifth instar larval heads to show that, Z chromosome is indeed dosage compensated in Bombyx. RNA-seq allows addressing DC on a genome-wide scale.

To determine whether chromosome-wide Z linked genes in B. mori are dosage compensated, we measured mRNA levels of Z linked genes between sexes at different embryonic stages and larval head through RNA-seq data. Our analysis suggests that the overall expression of Z chromosome is lesser than the autosomes and we support the hypothesis of suppression mediated dosage compensation in B. mori. The DC mechanism is not established in the two early stages (78h and 96h) but occurs from the later stage (120h) (Fig. 1). We also analyzed the link between expression of masc gene and DC to see if any connection indeed exists. As the embryo ages and after the up-regulation of masc gene, Z linked genes in males show a lower expression compensating the dosage as those of females. We speculate that DC emerges after 96 h in male silkworm. In the embryo samples, 96 h was considered as a crucial developmental stage, at which the sex determination and differentiation

Figure 1: (a) The autosomal and Z linked gene expression ratio distribution plots obtained from analyzing the RNA sequencing data of all the samples. These frequency peaks represent the majority of genes falling under certain log2 male/female ratio. For the 78 h and 96 h stage autosomal genes, this ratio is roughly centred around -0.5 (male biased expression), where as for the 120 h and head it is around 0 (equal expression between males and females). (b) Schematic representation of Z chromosome biased expression based on fold change. Genes with M/F fold change $>2,<-2$ and 2 to -2 are considered male biased (represented in green), female biased (red) and the unbiased (blue) respectively. The percentage of male biased genes decrease from dosage uncompensated early stages ($78 \mathrm{~h}, 96 \mathrm{~h}$) to the 120 h where there is a increase in the percentage of unbiased genes, a pattern that is also found in the dosage compensated head sample, suggesting the establishment of DC in the later embryonic stage of 120 h .
are most widely tuned in the embryos, evident by high male biased Z linked gene expression (Fig. 1). Comprehensive analysis of gene expression in different stages reveals that the onset of DC occurs at about 96h, which probably coincides with the initiation of sex specific splicing of sex determining gene doublesex, and prevails throughout. Analyses of head RNA-seq data confirms the existence of complete sex chromosomal DC in Bombyx.

To our knowledge, this is the first report verifying the existence of DC in B. mori using NGS data, by analyzing the expression pattern of Z linked genes at different stages of sexed embryos and the sexually differentiated head. We conclude that Bombyx Z chromosome is dosage compensated and its expression is just over half to that of the autosomal expression, with males showing a little higher expression than females.

The observed DC is possibly because of the reduced expression of genes on Z chromosome in males

Objective 2: The evolutionary dynamics of B. mori Z chromosome in relation to autosomes and sex chromosomes of other animal species.

The unique properties of sex chromosomes are predicted to have significant effects on the evolution of sex-linked genes, which has led to numerous studies of patterns of evolution on X chromosomes relative to autosomes in several taxa, as well as limited studies of the Z chromosome in vertebrates. Most notably, the hemizygosity of sex chromosomes in the heterogametic sex significantly affects rates and patterns of evolution in ways that can shed light on the relative importance of drift and selection.

Figure 2. Faster- Z effect in male-biased, unbiased, and female-biased genes. (Top) The faster- Z effect is $Z: A$ ratio of median ω, on a log2 scale, corrected for differences in alignment coverage using a weighted bootstrap. Error bars represent 95% confidence intervals from the weighted bootstrap. The value for female-biased genes is significantly greater than the value for male biased genes based on a permutation test. (Bottom) The faster- Z effect is Z :A ratio of median scaled DoS, on a log2 scale, weighted by the DoS.weight parameter using a weighted bootstrap. Error bars represent 95% confidence intervals from the weighted bootstrap. The value for female-biased genes is significantly greater than the value for male-biased genes based on a permutation test.

Genes linked to X or Z chromosomes, which are hemizygous in the heterogametic sex, are predicted to evolve at different rates than those on autosomes. This "faster-X effect" can arise either as a consequence of hemizygosity, which leads to more efficient selection for recessive beneficial mutations in the heterogametic sex, or as a consequence of reduced effective population size of the hemizygous chromosome, which leads to increased fixation of weakly deleterious mutations due to random genetic drift. Empirical results to date have suggested that, while the overall pattern across taxa is complicated, in general systems with male-heterogamy show a faster-X effect primarily attributable to more efficient selection while the only female heterogamy taxon studied to date (birds) shows a faster-Z effect primarily attributable to increased drift.

In order to test the generality of the faster-Z pattern seen in birds, we sequenced the genome of the lepidopteran insect Bombyx huttoni, a close outgroup of the domesticated silkmoth B. mori, and use this genome sequence to analyze faster-Z evolution in silkmoths (Lepidoptera). We first show that our B. huttoni assembly provides more than adequate coverage for molecular evolutionary studies. Comparing both $d N / d S$

B. Report of Dr VV Satyavathi's group

	VV Satyavathi
Other Members	RM Pavani K Lakshmi Prasanna
	K Swetha Kumari
Collaborators	HK Basavaraja
	PJ Raju
	BB Bindroo
	S Nirmal Kumar
	KA Sahaf
	KI Basha
	SV Seshagiri

Objectives

1. Introduction of anti-baculoviral property from transgenic silkworms to commercial silkworm strains followed by limited multilocational field trials;
2. Characterization of Bombyx mori nucleopolyhedrosis virus (BmNPV) resistant
ratios and estimates of selection derived from published polymorphism data across expression classes (male-biased, female-biased, and unbiased) indicates a strong faster-Z effect for female-biased genes, an intermediate faster-Z effect for unbiased genes, and no faster-Z effect for male-biased genes. This contrasts with the pattern observed in birds (equal faster-Z effect across all expression classes) and suggests that more efficient selection may be driving the faster-Z effect in silkmoths. We propose that conditions under which drift can predominate in sex chromosome evolution are not universal, even in female-heterogametic taxa (Fig. 2).

Taken together, our results suggest that female heterogamy alone may not be sufficient to explain the discrepancy observed between faster-Z evolution in vertebrates and faster-X evolution in mammals and Drosophila. Instead, a combination of several factors, including the ratio of effective population size of the hemizygous chromosome to autosomes and overall effective population size, likely interact to produce the patterns of sex chromosome evolution we observe across taxa. Additional studies of a more diverse array of species will help clarify the role of these forces in faster-Z and faster-X evolution.

Technical Officer

Project-Junior Research Fellow
DBT-Junior Research Fellow
(Since Dec. 2014)
Project-Junior Research Fellow (Since Dec.2014)
Breeder Consultant CoE
APSSRDI, Hindupur
CSR\&TI, Mysore
CSR\&TI, Berhampore
CSR\&TI, Pampore
APSSRDI, Hindupur
APSSRDI, Hindupur
transgenic silkworm strains;
3. Development of baculovirus resistant silkworm strains using marker assisted selection; and
4. Identification and functional characterization of novel genes involved in immune response pathways of silkmoths.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

The work undertaken in earlier years on each of the objectives has been summarized in the first parts of the corresponding descriptions given below.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
Objective 1: Introduction of anti-baculoviral property from transgenic silkworms to commercial silkworm strains followed by limited multilocational contained trials.

Genetically engineered silkworm (Bombyx mori) lines resistant to Nuclear Polyhedrosis Virus
(NPV) were developed using RNAi technology. The transgenic silkworm lines were initially developed under Nistari genetic background using piggyBac transposon-based germline transgenesis. The transgenic lines showed stable resistance against baculovirus and the antiviral property was later transferred to a high yielding, commercial strain CSR2 through repeated backcrossing. The transgenic lines are being maintained at Andhra Pradesh State Sericulture Research and Development Institute (APSSRDI), Hindupur. A work order has been made between CDFD and Biotech Consortium India Limited (BCIL) on preparation of a roadmap for seeking biosafety regulatory approval from Review Committee on Genetic Manipulation

Figure 1. Characteristics of baculoviral resistant B. mori transgenic hybrids and their respective controls. Transgenic CSR2 lines $(717,727)$ and transgenic Nistari line (170B) were crossed with multivoltine (Pure Mysore - PM) and bivoltine (CSR4, NB4D2, SK6 x SK7) breeds. The silk characters shown are (A) Filament length (m), (B) Renditta, and (C) Raw silk (\%). (D) Quantitative PCR analysis of BmNPV using Lef3 gene was performed to determine the viral load in the transgenic and control hybrids infected with BmNPV. The results were normalized against endogenous 18 S rRNA gene. Data are mean \pm S.E.M ($n=3$). p values are from a Student's test (* $p<0.05$; ** $p<0.01$). Bars in black and white represent transgenic and control hybrids, respectively.
(RCGM) to carry out multilocational contained trials of the transgenic silkworm.

RCGM in its $132^{\text {nd }}$ meeting held on March 2014 has given formal permission to CDFD for the conduct of multilocational trials in contained facilities on genetically engineered B. mori lines at 4 locations i.e. three institutions of Central Silk Board i.e. CSR\&TI, Mysore, CSR\&TI, Berhampore, CSR\&TI, Pampore, and Andhra Pradesh State Sericulture Research and Development Institute (APSSRDI), Hindupur. Subsequently, transgenic hybrid layings have been raised four times during the period under report and confined at theAPSSRDI for distribution to the selected centres. Since silkworm is the first transgenic insect being considered for commercial scale production in India, a subcommittee on Genetically Engineered Insects (GEI) was set up by RCGM (serviced by BCIL) to formulate guidance to conduct and monitor confined research trials (CRTs) and to develop insect specific supplementary guidelines. Accordingly, all Standard Operating Procedures (SOPs) and recoding formats specific to silkworm on the aspects such as i) Record of transport \& transport inventory list, ii) Record of storage, iii) Record of storage inspection \& inventory, iv) Record of brushing, v) Record of rearing, vi) Record of harvest/termination, vii) Record of post-rearing activities, and viii) Record of corrective action have been prepared to provide guidance for conducting contained trials. The proposal of CDFD for funds for the conduct of the trials was recommended by the Biotechnology Industry Research Assistance Council (BIRAC) and awaiting for the release of grants.
Objective 2: Characterization of Bombyx mori nucleopolyhedrosis virus (BmNPV) resistant transgenic silkworm strains.
For testing at multiple locations, hybrids were generated by crossing Nistari and CSR2 transgenic lines with various commercial local silkworm breeds. The performance of the hybrids was tested against baculovirus infection and the data on their survival was recorded in each season. All the transgenic hybrids showed increased resistance over their nontransgenic control hybrids upon BmNPV infection. Overall, hybrids resulted from the cross involving bivoltine lines showed higher survival rate as compared to polyvoltine transgenic lines. The transgenic and control hybrids were also studied for the silk yield characters. The silk
characters, namely, silk filament length, renditta, and raw silk were measured using standard procedures. The silk properties were compared among transgenic hybrids and their controls and the data is presented in Figures 1A-C. Among various hybrids, $717 \times$ CSR4 showed higher filament length, raw silk percentage and lowest value for renditta. The baculovirus accumulation in the transgenic lines was also measured as the concentration of OBs in the hemolymph of larvae after infection. The viral load, as determined by the viral transcript level using qPCR, reduced approximately 6 folds in PM x 727 and 170B x (SK6 x SK7) hybrids and 16 folds in $727 \times$ CSR4 hybrid as compared to their respective controls (Fig. 1D). These results confirm that the virus load is significantly reduced in the transgenic hybrids in comparison to control lines. The transgenic hybrids which indicated their success in inhibiting viral proliferation under laboratory trials need to be further tested at multilocational contained conditions.

Objective 3: Development of baculovirus resistant silkworm strains using marker assisted selection.

We investigated variations in the gene expression of B. mori following infection with BmNPV by generating a second generation Illumina sequencing libraries for the midgut and fat body tissues from infected and control larvae of resistant (SBNP1) and susceptible (CSR2) strains. A large number of genes were found to be differentially expressed between the resistant and susceptible silkworm strains. We have also identified several microsatellite markers polymorphic between CSR2 and SBNP1 strains.

In the transcriptome, various serpins were found to express differentially upon BmNPV challenge. Serpins are a superfamily of proteins that perform a broad spectrum of different biological functions. Time course expression analysis revealed high expression of Serpin 2 in CSR2 strain in the midgut as well as fat body tissue at 72 hours post BmNPV infection (Figs. 2A\&B). Interestingly, expression of Serpin 2 did not change much in BmNPV-treated resistant strain. We constructed a dsRNA specific for the cDNA sequence of Serpin 2 and used in a systemic RNAi treatment to reduce mRNA levels of Serpin 2. Knockdown of Serpin 2 resulted in an increase in viral load in hemolymph of both CSR2 and SBNP1 strains (Fig.2C), indicating a role for Serpin 2 in antiviral immunity. The multiple sequence alignment of

Serpin 2 with its closet homologues showed that several amino acid residues of serpins were conserved across different species (Fig.2D). Homology model was constructed based on crystal structure coordinates of 1 K 9 O and 3 FGQ at a resolution of $2.21 \AA$ and the protein structure was visualized using CCP4MG tool. The highly conserved region at reactive centre loop (RCL) of Serpin 2 was predicted as GAEA (324-327) and FHADRP (347-352) (Fig. 2D). The predicted P1 residue suggests that Serpin 2 inhibits a protease with trypsin specificity and may regulate trypsin/chymotrypsin like enzymes.
Future work includes identification of markers linked to baculovirus resistance, identification of polymorphism in the genes that are up/ down regulated in the midgut upon baculoviral
infection, and incorporation of the identified polymorphic markers linked to baculovirus resistance to susceptible strain by recurrent backcross strategy.

Objective 4: Identification and functional characterization of novel genes involved in immune response pathways of silkmoths.
In a previous study, we identified a novel immune protein Noduler which binds specific bacterial components and hemocytes leading to nodulation response in the wild silkworm, Antheraea mylitta. We investigated functional connection between Noduler with various signalling pathways. We consolidated information on the nodulation response in insects and made an analogy with that of vertebrate system.

Figure 2. Characterization of Serpin 2 gene in B. mori. (A) Quantitative PCR analysis of Serpin 2 in midgut tissues of fifth instar larvae of CSR2 and SBNP1 strains challenged with BmNPV. Samples were taken at different time points post BmNPV infection and the relative expression levels of the gene were normalized against endogenous 18S rRNA. Data are mean \pm S.E.M ($n=3$). p values are from a Student's test (${ }^{*} p<0.05 ;{ }^{* *} p<0.01$), (B) same as in (A), and the tissue used is fat body, (C) RT-PCR analysis of BmNPV using Lef3 as a target gene to determine the viral load in the midguts of dsGFP and dsSerpin 2 of CSR2 and SBNP1 strains infected with BmNPV. Endogenous 18S rRNA gene was used as an internal control, and (D) Multiple sequence alignment of reactive center loop (RCL) of Serpin 2 homologues. The conserved residues in the RCL region are boxed (Top planel). The predicted secondary structure of Serpin 2 is shown in a ribbon format (grey color) and the residues in RCL region (GAEA \& FHADRP) are shown as spheres (Bottom panel).

As nodule formation necessitates involvement of hemocytes, we first investigated the effect of bacterial infection on circulating hemocytes in the larval hemolymph of A. mylitta larvae. Upon bacterial challenge, the circulating hemocytes showed a significant increase in their number ($\mathrm{P}<0.05$) as compared to uninfected controls. As reported in other lepidopterans, five types of hemocytes - namely, prohemocytes, granulocytes, spherulocytes, plasmatocytes and oenocytoids - were identified in the larval hemolymph. Further analysis of hemocytes by differential staining methods, revealed an increase in the number of prohemocytes, granulocytes and plasmatocytes. Interestingly, Noduler knockdown blocked the increase in hemocyte count induced by bacterial infection. Knockdown of other immune-related genes such as gloverin and prophenoloxidase had no effect on hemocyte number, suggesting that Noduler has a specific role in hemocyte proliferation. Immunofluorescence analysis using anti-Noduler antibody revealed that Noduler is expressed by all hemocyte subtypes. We speculate that Noduler is a transmembrane protein that is synthesized in the fat body and then transported to the hemocyte surface, where it likely binds directly to pathogens. The binding of Noduler to microbial pathogens results in an interaction and efficient activation of hemocytes. This recognition event generally occurs either directly or indirectly between the secreted proteins and hemocyte receptors. Noduler possesses a reeler domain along its entire length which is highly conserved across species. The reeler domain was initially identified in the mouse reelin protein, as a secreted glycoprotein involved in the development of the central nervous system. Future work includes expression analysis and functional characterization of Noduler homologues in mammalian system, and identification of the molecular components of the signalling pathway.

Publications

1. Nagaraju J, Gopinath G, Sharma V and Shukla JN (2014). Lepidopteran sex determination: A cascade of surprises. Sexual Development 8: 104-112.
2. Sackton TB, Corbett-Detig RB, Nagaraju J, Vaishna L, Arunkumar KP and Hartl DL (2014). Positive selection drives faster-Z evolution in silkmoths. Evolution 68: 2331-2342.
3. Salvemini M, Arunkumar KP, Nagaraju J, Sanges R, Petrella V, Tomar A, Zhang H, Weiwei Y and Saccone G (2014). De novo assembly and transcriptome analysis of the mediterranean fruit fly Ceratitis capitata early embryos. PLoS One 9: e114191; doi: 10.1371/journal.pone.0114191.
4. Satyavathi VV, Minz A and Nagaraju J (2014). Nodulation: an unexplored cellular defense mechanism in insects. Cellular Signalling 26: 1753-1763.
5. Satyavathi VV, Raju PJ, Basha KI, Basavaraja HK and Nagaraju J (2014). Genesis and performance evaluation of baculovirus resistant transgenic silkworm hybrids. Sericologia 54: 181-187.
6. Saranathan R, Tomar A, Sudhakar P, Arunkumar KP and Prashanth K (2014). Draft genome sequence of a multidrugresistant Acinetobacter baumannii PKAB 07 clinical strain belonging to sequence type 195. Genome Announcements 2: e0018414; doi: 10.1128/genomeA.00184-14.
7. Singh CP, Singh J and Nagaraju J (2014). bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori. Insect Biochemistry and Molecular Biology 49: 59-69.
8. Singh CP, Vaishna RL, Kakkar A, Arunkumar KP and Nagaraju J (2014). Characterization of antiviral and antibacterial activity of Bombyx mori seroin proteins. Cellular Microbiology 16: 1354-1365.
9. Shantibala T, Victor TH, Luikham R, Arunkumar KP, Sharma HD, Lokeshwari RK and Kim I. Complete mitochondrial genome of the wild eri silkworm, Samia canningi (Lepidoptera: Saturniidae). Mitochondrial DNA (In press).

Other publications

1. Arunkumar KP (2014). Book review of the Annual Review of Genetics 2013, Bonnie Bassler et al., (eds) Current Science 106: 1755-1757.
2. Arunkumar KP (2014). Role of biotechnology in seri-development. Indian Silk 5: 74-76.

LABORATORY OF MOLECULAR ONCOLOGY
 Genomics and molecular genetics of cancer and genetic disorders

Faculty	Murali D Bashyam
PhD Students	P Ramaswamy
	A Sita Rama Raju
	Raju Kumar
	A Srinivas
	Pratyusha Bala
	Ashmala Naz
Other Members	
	Ajay Kumar Chaudhary
	Mithu Raychaudhuri
	Ratheesh Raman
	K Viswakalyan
	K Padmavathi
	Arunkumar Paripati
Collaborators	A Dalal
	Saumyadipta Pyne
	G Swarnalata
	S G Uppin
	M Srinivasulu
	Subramanyeshwar Rao
	KVVN Raju
	Sujit C Patnaik
	Mohana Vamsy
	Shuba R Phadke
	Girisha KM
	Sankar V Hariharan
	Rekha Gupta
	Sumita Danda

Staff Scientist
Senior Research Fellow
(Till Aug. 2014)
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow
Junior Research Fellow
(Since Aug. 2014)
Technical Officer
DST-Women Scientist
Research Associate
(Since Sept. 2014)
Research Assistant
Project Assistant
(Since Jun. 2014)
Project-Junior Research Fellow
CDFD, Hyderabad
CRRAO AIMSCS, Hyderabad
Apollo Hospitals, Hyderabad
NIMS, Hyderabad
MNJ Hospital, Hyderabad
BIACHRI, Hyderabad
BIACHRI, Hyderabad
BIACHRI, Hyderabad
Omega Hospitals, Hyderabad
SGPGIMS, Lucknow
Kasturba Hospital, Manipal
Medical College, Trivandrum
MGMC\&H, Jaipur
CMC, Vellore

Objectives

1. Identification and characterization of important deregulated genes/pathways in cancers prevalent in India; and
2. Identification and characterization of disease causing mutations in genetic disorders.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

Colorectal Cancer (CRC): 50\% of early-onset rectal (but not colon) cancer samples did not harbour deregulated canonical Wnt signalling or mismatch repair inactivation though they
exhibited extensive chromosomal instability (CIN). Microarray based transcriptome profiling performed on microsatellite stable samples stratified for Wnt status revealed enrichment of the Wnt/ß-Catenin pathway in Wnt+ samples, as expected. A combined Gene Set Enrichment Analysis (GSEA) and Significance Analysis of Microarrays (SAM) analyses pointed to the possibility of enrichment of non-canonical Wnt pathway genes in Wnt- samples.

Tongue and oesophageal cancer: Analysis of more than one hundred oral tongue squamous cell carcinoma (SCCOT) samples revealed younger
age and FHIT loss to be significantly associated with p53 inactivation especially in patients with no history of tobacco use. P53 inactivation was the only significant prognosticator of SCCOT survival in multivariate analysis. The TP53 codon 72 Pro allele was significantly associated with SCCOT compared to healthy controls; no such association was detected in oesophageal squamous cell carcinoma (ESCC) samples. Surprisingly, TP53 DNA binding domain mutation was significantly associated with the Pro allele in ESCC but not in SCCOT.

Genetic disorders: Analysis of twenty five Phenyl ketonuria (PKU) families revealed a significantly low proportion of missense mutations
as compared to other world populations. In contrast, a significantly higher proportion of splice, insertion-deletion and nonsense mutations point to a unique Phenylalanine hydroxylase (PAH) mutation profile in India. In another study, we identified a significantly higher proportion of autosomal recessive form of hypohidrotic ectodermal dysplasia (HED) due to a founder ectodysplasin A receptor (EDAR) mutation unlike other world populations where the X-linked form predominates.
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

CRC: We performed single sample GSEA for identification of pathways differentially

Figure 1. Identification of the first Wnt- gene signature in microsatellite stable CRC. Cellular pathways and genes that are differentially enriched (A) or expressed (B) in Wnt- rectal cancer samples, respectively. Each column represents one sample and each row represents one pathway (A) or gene (B).
expressed between Wnt+ and Wnt- early onset sporadic rectal cancer (EOSRC) samples followed by 'supervised' analysis (comparative marker selection). The pathways were able to faithfully distinguish Wnt+ and Wnt- samples
based on 'unsupervised' clustering as expected (Fig. 1A). SAM and leading edge analyses on genes constituting the 50 pathways revealed differentially expressed genes that were further validated using quantitative reverse transcription

Figure 2. SMARCD1 appears to be a novel transcription target of TP53. Panel A shows pathways that are differentially enriched in TP53 WT (compared to mut) SCCOT samples. Each column represents one sample and each row represents one pathway. Panel B shows genes that are differentially expressed with respect to TP53 expression status (samples exhibiting higher TP53 expression are expected to harbour a mutant TP53); only SMARCD1 exhibits positive correlation withTP53. Panel C shows Q-RT-PCR based validation of TP53 and SMARCD1 expression (meancentred across all samples); TP53 ($\mathrm{p}<0.01$) and SMARCD1 ($\mathrm{p}<0.05$) transcript levels were significantly different between TP53 WT and mut samples, as determined by Mann-Whitney U test.

PCR (Q-RT-PCR) in independent samples. Twelve validated genes were able to differentiate Wnt+ and Wnt- samples in unsupervised analysis (Fig. 1B). This is the first Wnt- gene signature identified in CRC.

Tongue cancer: We evaluated DNA copy number alterations and transcriptome profile of SCCOT samples stratified by p53 status. Surprisingly, both p53 wild type (WT) and mutant (mut) samples exhibited comparable
extent of CIN. Transcriptome profiles were analysed to determine differentially expressed pathways between p53 mut (twenty three) and WT (seventeen) samples (Fig. 2A), as described above for CRC. At 0\% false discovery rate (FDR), SAM yielded only one differentially expressed gene namely TP53 itself thus validating our approach. Interestingly, an FDR of $<8 \%$ revealed fourteen genes including previously characterized TP53 targets but only SMARCD1 exhibited

Figure 3. The PAH c.1103A>G mutation disrupts exon 11 splicing. Panel A, Agarose gel analysis of splicing assays performed with pCAS minigene constructs generated for the wild type (WT) and mutant (Mut) PAH exon 11. Result for another mutation (c.755G>A) is shown for comparison. M, 100bp DNA ladder. Panel B, complete nucleotide sequence of PAH exon 11; the mutant base is underlined and the alternate (wild type) base is shown on top.
positive correlation with TP53 expression (Fig. 2B). Differential expression of TP53 and SMARCD1 were confirmed using Q-RT-PCR in TP53 WT and mut samples (figure 2C) raising the interesting possibility of SMARCD1 being perhaps transcriptionally activated by mutant TP53 as shown earlier for other genes. This hypothesis is currently being tested.

Genetic disorders: We evaluated ten (five missense, four non-sense and one silent variant) PAH mutations using splicing assays in recombinant pCAS minigene constructs; only one (c.1103A>G (p.E368G); located in exon 11) exhibited a deleterious effect causing skipping of exon 11 (Fig. 3A). The mutation generates a stretch of four 'G' residues (Fig. 3B) suggested to be a signature of exonic splicing silencer elements. In another study, we extended our work on HED to a total of 48 families; mutation was detected in 40 (Ectodysplasin A1 (EDA-A1)) in 23 families, EDAR in 16 and ectodysplasin A receptor-associated death domain (EDARADD) in 1). We detected a novel $\sim 23 \mathrm{~Kb}$ deletion in EDA-A1 extending from EDA-A1 IVS6+67 till beyond the downstream gene AWAT2, We also identified the first splice site mutation ever reported in EDARADD (IVS2+1G>A) resulting in autosomal recessive HED.

Future plans and directions

1. Characterization of genes/pathways driving EOSRC in the absence of canonical Wnt signalling.
2. Validation of SMARCD1 transactivation by TP53.
3. Characterization of selected mutations affecting transcript stability/processing identified through screening of various genetic disorders.

Publications

1. Adduri RSR, Katamoni R, Pandilla R, Madana SN, Paripati AK, Kotapalli V and Bashyam MD (2014). TP53 Pro72 allele is enriched in oral tongue cancer and frequently mutated in esophageal cancer in India. PLoS One e114002. doi: 10.1371/journal. pone. 0114002.
2. Adduri RSR, Kotapalli V, Gupta NA, Gowrishankar S, Srinivasulu M, Ali MM, Rao S, Uppin SG, Nayak UK, Dhagam S, Chigurupati MV and Bashyam MD (2014). P53 nuclear stabilization is associated with FHIT loss and younger age of onset in squamous cell carcinoma of oral tongue. BMC Clinical Pathology 14:37.
3. Bashyam MD, Chaudhary AK, Kiran M, Nagarajaram HA, Devi RR, Ranganath P, Dalal A, Bashyam L, Gupta N, Kabra M, Muranjan M, Puri RD, Verma IC, Nampoothiri S and Kadandale JS (2014). Splice, insertiondeletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India. Journal of Cellular Biochemistry 115: 566-574.
4. Bashyam MD, Chaudhary AK, Kiran M, Reddy V, Nagarajaram HA, Dalal A, Bashyam L, Suri D, Gupta A, Gupta N, Kabra M, Puri RD, RamaDevi R, Kapoor S and Danda S (2014). Molecular analyses of novel ASAH1 mutations causing Farber
lipogranulomatosis: analyses of exonic splicing enhancer inactivating mutation. Clinical Genetics 86: 530-538.
5. Khursheed M and Bashyam MD (2014). Apico-basal polarity complex and cancer. Journal of Biosciences 39: 145-155.
6. Raman R, Kotapalli V, Adduri R, Gowrishankar S, Bashyam L, Chaudhary A, Vamsy M, Patnaik S, Srinivasulu M, Sastry R, Rao S, Vasala A, Kalidindi N, Pollack J, Murthy S and Bashyam M (2014). Evidence for possible non-canonical pathway(s) driven early-onset colorectal cancer in India. Molecular Carcinogenesis 53: E181-E186; doi:10.1002/mc. 21976.
7. Raman R, Kongara R, Kotapalli V, Gowrishankar S, Sastry RA, Nagari B and Bashyam MD (2014). Pathological stage significantly predicts survival in colorectal cancer patients: a study from two tertiary care centers in India. Colorectal Cancer 3: 265-275.
8. Raman R, Kotapalli V, Vamsy M, Patnaik SC, Srinivasulu M and Bashyam MD (2014). A positive family history of cancer or lifestyle factors may not explain the high incidence of early-onset colorectal cancer in India. Colorectal Cancer 3: 409-416.
9. DelmaCR, Somasundaram $S T$, Srinivasan GP, Khursheed M, Bashyam MD and Aravindan N (2015). Fucoidan from Turbinariaconoides: A multifaceted 'deliverable' to combat pancreatic cancer progression. International Journal of Biological Macromolecules 74:447-57.
10. Bashyam MD, Kotapalli V, Raman R, Chaudhary A, Yadav B, Gowrishankar S, Uppin S, Kongara R, Sastry, Vamsy M, Patanaik S, Rao S, Dsouza S, Desai D andTester A. Evidence for presence of mismatch repair gene expression positive Lynch syndrome cases in India. Molecular Carcinogenesis doi: 10.1002/mc. 22244 (In press).

LABORATORY OF NEUROSPORA GENETICS

(1) The search for nucleus-limited genes.
(2) Why are wild-isolated Neurospora strains suppressors of meiotic silencing?

Faculty	DP Kasbekar
PhD student	Dev Ashish Giri
Other Members	A Sheeba
	K Sreethi Reddy
	S Rekha
	Angela Sharma

Haldane Chair
Junior Research Fellow
Technical Officer
Technical Assistant
Technical Assistant
Research Assistant
(Since Jan. 2015)

Objectives

Project 1: The search for nucleus-limited genes
This project represents the first systematic search for nucleus-limited genes. A nucleus bearing a null allele (Δ) of a nucleus-limited gene is not complementable by the wild-type $(W T)$ nuclei in a $[(W T)+(4)]$ heterokaryon. Although no nucleus-limited gene has thus far been reported, sporadic reports in the literature suggest that such genes might exist in fungi. Our approach was to introgress translocations (T) from N. crassa into N. tetrasperma to create [(T) $+(N)]$ and $[(D p)+(D f)]$ heterokaryon strains (for explanation of terms used see below). Ordinarily, in $[(D p)+(D f)]$ heterokaryons, we expect the $D f$ nuclei to be rescued by the $D p$ nuclei, therefore the $[T+N]$ and $[D p+D f]$ heterokaryons should have the same phenotype. However, if the Df were to delete a nucleus-limited gene, then it would not be complemented by the $D p$ nucleus, and the $[D p+D f]$ and $[T+N]$ types should differ in phenotype.

Project 2: Why are wild-isolated Neurospora strains suppressors of meiotic silencing?
Earlier work by us showed that meiotic silencing by unpaired DNA (MSUD) is suppressed in crosses between most wild-isolated N. crassa strains and MSUD tester strains made in the standard laboratory Oak Ridge (OR) background. We hypothesized that sequence heterozygosity between the wild and OR genomes might cause one or more MSUD gene to become unpaired and silence itself, thus switching off the MSUD machinery. We have now constructed new MSUD testers in a genetic background derived from the wild-isolated Bichpuri-1 a (B) and Spurger A (S) strains to ask whether MSUD is seen in
tester-heterozygous crosses that otherwise are isogenic for this B / S background.
Project 1. The search for nucleus-limited genes
Summary of work done until the beginning of this reporting year (upto March 31, 2014)

A sexual cross in Neurospora involves the fusion of two haploid nuclei of opposite mating types, mat-A and mat-a. The resulting diploid zygote nucleus undergoes meiosis and a post-meiotic mitosis to produce eight haploid progeny nuclei, four apiece mat-A and mat-a. In N. tetrasperma, the eight nuclei are partitioned into four ascospores per ascus, each ascospore receiving a non-sister mat A + mat a pair, whereas in N. crassa they are partitioned into eight ascospores (4 mat A +4 mat a). N. tetrasperma ascospores germinate to produce heterokaryotic mycelium that contains nuclei of both mating types, therefore it is competent to undergo a self-cross. However, by chance the mycelia can also produce some homokaryotic conidia (vegetative spores). Additionally, during ascus development five or more (upto eight) ascospores are occasionally produced, with a pair of smaller homokaryotic ascospores replacing a dikaryotic ascospore. The homokaryotic conidia or ascospores generate self-sterile single-mating-type strains that can cross with like strains of opposite mating type. The dominant Eight-spore (E) mutation substantially increases the frequency of >4-spored asci. N. crassa ascospores germinate to produce a homokaryotic mycelium in which all nuclei have the same mating type, therefore the mycelia from two different ascospores (one apiece mat A and mat a) are needed for a sexual cross.
Many chromosome translocations are known in N. crassa. Insertional translocations (IT) that
transfer a donor chromosome segment into a recipient chromosome are defined by three breakpoint junctions, viz, "A", created by the deletion on the donor chromosome, and "B" and "C" (proximal and distal), created by the insertion in the recipient chromosome. In the cross of an $I T$ with a normal sequence strain ($I T \times N$), alternate segregation generates $4 N+4 T$ ascospores, whereas adjacent 1 segregation generates $4 D p$ $+4 D f$, that is, four ascospores with a duplication $(D p)$ of the translocated segment, and four with the complementary deficiency ($D f$). The N, T and $D p$ ascospores are viable, whereas Df ascospores are inviable. Our laboratory had defined the breakpoint junctions of several ITs, therefore PCR with junction-specific primers could be used to establish the genotype of progeny from $T \times N$. This was used to introgress four ITs (EB4, IBj5, UK14-1, and B362i) from N. crassa to N. tetrasperma. Introgression is the transfer of genes or genomic regions from one species into another via hybridization and backcrosses. To our best knowledge this was the first introgression of translocations from one species into another.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
(1) Following the introgressions of the four translocations, we constructed two general types of N. tetrasperma heterokaryons with mat-A and mat-a nuclei of different genotypes.

One type being $[T+N$ (with one translocation nucleus and one normal sequence nucleus), and the other being [$D p+D f$ (with one nucleus carrying a duplication of the translocation region and the other being deleted for the translocation region). Self-crosses of these heterokaryons again produced $[T+N]$ and $[D p+D f]$ progeny. From conidia produced by the heterokaryotic mycelia we obtained self-fertile (heterokaryotic) and self-sterile (homokaryotic) derivative strains. Homokaryotic conidial derivatives of both mating types were obtained from $[T+N]$ heterokaryons, but [$D p+D f]$ heterokaryons produced viable conidial homokaryons of only the mating type of the $D p$ nucleus. All four $[T+N]$ heterokaryons, and three $[D p+D f]$ heterokaryons, produced both self-sterile and self-fertile conidial derivatives, but the $[D p(B 362 i)+D f(B 362 i)]$ heterokaryons produced only self-sterile ones. Plausibly, the $D f($ B362i) nuclei may be deleted for a nucleuslimited gene required for nuclear packaging into conidia, and whose deficit is not complemented by the neighboring $\operatorname{Dp}($ B362i) nuclei. The work was published in G3 Genes, Genomes, Genetics during preparation of this report.
Our search for nucleus-limited genes also led to the serendipitous discovery of a mutation that specifically affected alternate segregation, and apparently had no effect on the adjacent 1 segregation (Fig. 1). The two segregation types are distinguishable only in $T \times N$ crosses. But why would a $T \times N$ cross be homozygous for

Figure 1. Asci from the cross $T(B 362 i) A \times E$ a. The E (Eight spore) strain is presumed to be of normal sequence. In an E-heterozygous cross, the asci can contain upto eight homokaryotic ascospores, instead of four heterokaryotic ones. Large ascospores are the heterokaryons, the small ones are the homokaryons. Viable ascospores turn black whereas inviable ones remain white. Note that no ascus has more than four black ascospores. This suggests that alternate segregation is blocked, whereas the adjacent 1 segregation is unaffected.
any mutation, let alone one that distinguishes between the two segregations? A 1969 paper provided the clue. It reported that two Neurospora strains, C4,T4 and E, shared the same genetic background. Our group used the C4, T4 strain to construct the T parent, and the E strain as the normal sequence parent. Consequently, a subset of $T \times N$ crosses apparently had become homozygous for the segregation defect.

Project 2: Why are wild-isolated Neurospora strains suppressors of meiotic silencing?

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

MSUD is an RNAi-mediated process that eliminates the transcripts of any gene that is not properly paired with its homolog in meiosis. The ::r, ::Bmlr and ::mei-3 tester strains contain a copy of the r (Round ascospores), Bmlr (β-tubulin) or mei-3 gene inserted ectopically in the his-3 locus on chromosome 1. In the cross of a tester with an OR strain of opposite mating type, the ectopic copy is unpaired in meiosis and induces the synthesis of MSUD-associated small interfering RNA (masiRNA) which silences it as well as its paired native homologs. Since β-tubulin and MEI-3 protein are essential for ascus development, and the product of the r gene is required for the spindle shape of ascospores, the silencing results in ascus or ascospore abnormalities. Homozygous tester A x tester a crosses do not show MSUD, nor do crosses of the testers with the semi-dominant Sad and Sms suppressors of meiotic silencing, and the asci and ascospores develop normally. The suppressor alleles prevent the proper pairing of their wild-type homologues and induce them to autogenously silence themselves. Only eight of 80 wild-isolated strains examined silenced both bml and mei-3 in crosses with the OR-derived testers and they were designated as "OR" type, four failed to silence both genes and were designated the "Sad" type, and the remaining 68 silenced $b \mathrm{ml}$ but not mei-3 and were designated the "Esm" type. Additional results suggested that MSUD persists throughout the duration of the cross with the OR type, is very fleeting in the cross with the Sad type, and lasts for an intermediate duration in crosses with the Esm type strains. We hypothesized that sequence polymorphism between the tester and wild genomes might cause one or more gene essential for MSUD to become unpaired, silence itself, and thus shorten MSUD duration. To test
this idea we decided to make new testers in an isogenic mat a and mat A background derived from the Sad type wild-isolates Bichpuri-1 a and Spurger A. Our hypothesis predicts that a testerheterozygous cross that is otherwise isogenic for the B/S background would show MSUD.
To make the testers we used the RIP mutational process to knock out the mus-51 gene needed for non-homologous end joining (NHEJ). Consequently, in a mus-51 mutant strain transforming DNA can integrate only by homologous recombination. This allows the use of targeted integration to create well-defined reporter strains in the B/S line.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
The native r^{+}gene is 3.3 kb long and located on chromosome I. A 2.3 kb 3 ' fragment ($r^{e f}$) was joined to the hph cassette by double-joint PCR to create the $4.1 \mathrm{~kb} r^{e f}$-hph fusion construct. Use of this construct to transform a mus-51 mutant strain and selection of transformants on hygromycin medium resulted in the targeted replacement of nucleotides 218849 to 219010 in chromosome 7 L with the $4.1 \mathrm{~kb} r^{\text {ef }}$-hph fusion.
Transformants obtained by us in this way corresponded to the $:: r 2$ tester made by others in the OR background. When a strain carrying $:: r 2$ is crossed to an OR strain of opposite mating type, close to 100% of the ascospores are round. This indicates that $:: r 2$ is detected as unpaired in such crosses, and as a result, the native r^{+}gene on chromosome l is silenced. When a strain carrying $:: r 2$ is crossed to a strain carrying the same ::r2, very few round spores are produced, indicating that the $:: r 2$ constructs are paired in such crosses and also the native r^{+}gene on chromosome I is expressed at normal levels.
Our model predicts that if we use our new tester to make tester-heterozygous cross that is otherwise isogenic for the B/S background then we will see evidence for MSUD. These crosses are presently under construction.

Other Publications

1. Kasbekar DP (2014). Editorial. Lesser models. Journal of Biosciences 39: 1.
2. Kasbekar DP (2014). Sidelights. Are any fungal genes nucleus-limited? Journal of Biosciences 39: 341-346.
3. Kasbekar, DP (2015). What have we learned
by doing transformations in Neurospora tetrasperma? In: Genetic Transformation Systems in Fungi, Volume 2. Edited by M. A. van den Berg and K. Maruthachalam,

Springer, Switzerland. Pages 47-52.
4. Kasbekar DP (2015). Editorial. Via media. Journal of Biosciences 40: 1.

LABORATORY OF PLANT-MICROBE INTERACTIONS
 Understanding virulence mechanisms of Xanthomonas plant pathogens and interaction with host plants

Faculty
PhD Students
Other Members
Subhadeep Chatterjee
Rikky Rai
Sheo Shankar Pandey
Akanksha Kakkar
Raj Kumar Verma
Biswajit Samal
Prashantee Singh
Binod Bihari Pradhan
Kondreddy Anil
Sree Gowrinadh Javvadi
L Santhosh Kumar
Pradeep Kumar Patnana
N Saraswathi
Jagga Bikshapathi

Objectives

1. Identification and characterization of virulence factors of Xanthomonas;
2. Role of cell-cell communication in Xanthomonas colonization and virulence;
3. Function of protein secretion system in Xanthomonas and role in virulence; and
4. Role of PAMP in pathogen recognition and plant defense response
Summary of work done until the beginning of this reporting year (upto March 31, 2014)
We are trying to understand the virulence mechanisms of important Xanthomonas pathogens like, Xanthomonas campestris pv. campestris (Xcc; a pathogen of crucifers), Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola (Xoo, Xoc; pathogens of rice). In Xanthomonas, cell-cell (quorum sensing) is mediated by the production and sensing of fatty acid like signaling molecule known as Diffusible Signaling Factor. We have shown that DSF in Xoo plays an impotant role in trasition of planktonic to biofilm lifestyle. Our studies have shown that DSF in closely related phytopathogens regulate virulence associated traits in a contrasting fashion. To understand

Staff Scientist
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Senior Research Fellow
Junior Research Fellow
Junior Research Fellow
Technical officer
Research Associate
(Till May 2014)
Project-Junior Research Fellow (Till Sep. 2014)
Project-Junior Research Fellow
Project-Junior Research Fellow
Project-Junior Research Fellow
(Since Oct. 2014)
Project-Junior Research Fellow
(Since Dec. 2014)

the role of DSF in adaptation to different lifestyle we have characterized the role of DSF in the virulence of Xoo and Xoc. Charaterization of DSF deficient $\Delta r p f F$ mutant of Xoc revealed that DSF promotes in planta growth by regulating ferric iron uptake. We are presently studying the role of DSF in regulating virulence associated function in Xanthomonas oryzae pv. oryzicola (Xoc) and its contribution to adaptation to host environment.

To understand the dynamics of quorum sensing, we have previously constructed several biosensor strains to study quorum sensing response in individual cells in the population. We have used also an E. coli system to reconstitute the AHL mediated QS system to study QS in a heterologous host. Our study has indicated that bacteria exhibit non genetic phenotypic heterogeneity in social behavior and may contribute to bet hedging strategy to changing environmental condition. Overall, these results support the model that bacteria maintain QSresponsive and non-responsive subpopulations at high cell densities in a bet-hedging strategy to simultaneously perform functions that are both positively and negatively regulated by QS to improve their fitness in fluctuating environments. Our results have shown that bacteria maintain
stochastic reversible phenotypic heterogeneity during a widely conserved QS-response that is involved in coordinating multiple social behaviors
Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)
Project 1: Role of quorum sensing and heterogeneity in environmental adaptation of bacteria.

Bacteria coordinate their social behavior in a density dependent manner by production of diffusible signal molecules by a process known as quorum sensing (QS). We have shown that bacteria exhibit reversible non gebnetic heterogeneity in QS. We have proposed a model based on our studies and evolutionary theory, which predicts that maintaining phenotypic heterogeneity in performing social tasks is advantageous as it can serve as a bet-hedging survival strategy. To gain more understanding of the role of QS in adaptation to different environmental conditions, we performed coinoculation and competition experiments using mixed population of wild type and QS deficient
mutants (Fig. 1). Coinoculation studies indicate that under rich media condition, there is no significant difference in the growth rate of wild type and QS - mutants. However, in coculture, the QS- mutant exhibited significant growth advantage which indicates that cost of signal production may be disadvantageous for the wild type strain when nutrients are available in sufficient amount. In recent experiments we have observed that the wild type cells exhibit increased viability during late stationary-phase, which is generally associated with nutrient limitation, compared to the QS- mutants. In general, it appears that QS- mutants exhibit growth disadvantage at early log phase and compromised viability at late stationary phase. Our transcriptome analysis by microarray and translation assays indicate that QS promotes transition to stationary phase by slowing down the metabolism (transcription and translation), as an anticipation of stationary-phase stress. In future, we are interested to study the role of QS in stationary-phase adaptation and contribution of QS heterogeneity in this process (Fig. 2).

Figure 1. QS- mutants exhibit growth advantage over wild type strain in co culture... PssB728a (closed circles), PssBHSL (closed diamond) and co culture (closed triangle) of both the strain inoculated at a ratio of 1:1 in Kings B broth. At times indicated, samples were taken and dilution plated to obtain single colonies on selection plate and CFU/ml of each respective strain and total CFU/ml in the co culture was determined. (B) Enrichment of QS cheater (PssBHSL; ahll). Co cultures were inoculated with a wild type strain PssB728a to PssBHSL (ahll) mutant ratio of 1:1 in Kings B Broth. At times indicated, samples were taken and dilution plated to obtain single colonies. Shown are CFU/ml of the entire culture (closed circles) and PssBHSL (ahll:: Km; open circles) as determined by plating on selective and nonselective media. Approximately, 200-300 colonies were replica patched in selective and nonselective media to determine the percent of wild type and PssBHSL in the co culture. Percent of the wild type and the pssBHSL are shown by closed and open bars. Values presented are mean and standard deviation (+S.D) from two experiments each consisting of two replicates.

Figure 2. A proposed model for the role of QS as a signal for anticipation of stationary-phase. At high cell-density, the concentration of QS signal increases and mediate down regulation of transcription and translation, as a preparative step to counter long-term survival under stationary-phase stress. QS- mutants exhibit increased production of ribosomal proteins, protein synthesis, metabolic enzymes and poor survival under prolong stationary-phase stress.

Project 2: Role of DSF mediated cell-cell signaling in iron uptake and virulence of Xanthomonas oryzae pv. oryzicola.
Cell -cell communication mediated by diffusible signal factor (DSF) plays an important role in virulence of several Xanthomonas group of plant pathogens. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzicola, DSF is required for virulence and in planta growth. In order to understand the role of DSF in promoting in planta growth and virulence, we have characterized the DSF deficient mutant of X. oryzae pv. oryzicola. Mutant analysis by expression analysis, radiolabelled iron uptake studies and growth under low-iron conditions indicated that DSF positively regulates ferric iron uptake. Further, the DSF deficient mutant of X. oryzae pv. oryzicola exhibited a reduced capacity to use ferric form of iron for growth under lowiron conditions. Exogenous iron supplementation in the rice leaves rescued the in planta growth deficiency of the DSF deficient mutant. In this work we have also shown that Xanthomonas produces vibrioferrin siderophore and DSF
positively regulate vibrioferrin production by down regulating expression of repressor FUR (Fig. 3). This is the first report which demonstrates that the Xanthomonas group of plant pathogens produces siderphore vibrioferrin for the uptake of ferric form of iron. In this study we also showed that siderophore production in planta is very critical for growth and virulence of Xoc. Our results also indicate that requirement of iron uptake strategies to utilize either Fe^{3+} or Fe^{2+} form of iron for colonization may vary substantially among closely related members of the Xanthomonas group of plant pathogens. Apart from iron, we have identified novel role of DSF in regulating Type III secretion system which is required for pathogenicity of Xanthomonas. DSF deficient rpfF mutant are exhibit reduced Hypersensitive Response (HR) and reduced expression of Type III secretion components and effectors.

In future, we want to study the mechanism of DSF sensing which controls iron uptake and regulatory mechanisms, which are involved in DSF regulated traits such as Type III secretion, attachment and biofilm formation.

Figure 3. Diffusible signal factor (DSF) mediated quorum sensing in the rice pathogen Xanthomonas oryzae pv. oryzicola (Xoc) regulate ferric iron uptake and diverse virulence associated factors to promote pathogenesis. DSF synthase RpfF produces DSF in a density dependent fashion and up regulate vibrioferrin siderophore biosynthesis and uptake under low -iron conditions. DSF negatively regulate fur expression, which is a suppressor of iron uptake vibrioferrin biosynthetic and uptake genes. Apart from siderophore production, DSF positively regulate production of ferric-citrate transporter which transports ferric-citrate complex. Siderophore vibrioferrin is produced in planta and is required for virulence of Xoc.

Publications

1. *Lindow S, Newman K, Chatterjee S, Baccari C, Lavarone AT and lonescu M (2014). Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce's disease. Molecular Plant Microbe Interactions 27: 244-254.
2. Pradhan BB and Chatterjee S (2014). Reversible non-genetic phenotypic heterogeneity in bacterial quorum sensing. Molecular Microbiology 92: 557-569.
3. Sundaram RM, Chatterjee S, Oliva R, Laha GS, Cruz CV, Leach JE and Sonti R (2014). Update on bacterial blight of rice: fourth international conference on bacterial blight. Rice 7: 12-14.
4. Rai R, Javvadi S and Chatterjee S. Cellcell signalling promotes ferric iron uptake in Xanthomonas oryzae pv. oryzicola that contribute to its virulence and growth inside rice. Molecular Microbiology. doi: 10.1111/ mmi. 12965 (In press).
*Work done elsewhere

LABORATORY OF TRANSCRIPTION
 Mechanism of transcription termination and antitermination in Escherichia coli

Faculty	Ranjan Sen	Staff Scientist
PhD Students	Rajesh Kumar	Senior Research Fellow
	Sourabh Mishra	Senior Research Fellow
	Mohd Zuhaib Qayyum	Senior Research Fellow
	\checkmark Vishalini	Senior Research Fellow
	Gairika Ghosh	Senior Research Fellow
	Richa Gupta	Junior Research Fellow
	Md. Hafeezunnisha	Junior Research Fellow (Since Jul. 2014)
Other Members	Sapna Godavarthi	Technical Officer
	Jayvardhan Reddy	Technical Assistant
	Debashish Dey	DBT-Research Associate (Till Dec. 2014)
	Amitabh Ranjan	Research Associate (Till Aug. 2014)
	B Sudha Kalayni	Research Associate
	Shweta Singh	Research Associate (Since Sep. 2014)
	M Pallavi	Project-Junior Research Fellow (Until Nov. 2014)
	Sonia Agrawal	Project-Junior Research Fellow (Since Feb. 2015)
Collaborators	Udayaditya Sen	SINP, Kolkata
	V Nagaraja	IISc., Bangalore
	Jayanta Mukhopadhyay	Bose Institute, Kolkata
	Akira Ishihama	Hosei University, Japan

Objectives

Fundamental questions in the area of mechanism of transcription termination and antitermination processes is still not very clear and offers an exciting subject for study. In my laboratory, we have undertaken following studies. 1) Mechanism of action of transcription termination factor, Rho.
2) Molecular basis of Rho-NusG interaction. 3) Mechanism of conversion of NusA into an antiterminator by N. 4) Mechanism of action of transcription antitermination of Rho-dependent termination by an anti-rho factor, Psu. 5) In vivo cross-talks between Rho-dependent termination and other biological processes. 6) Designing transcription modulators using synthetic biology approaches.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

- We showed that sequence specific recognition of the rutsite in majority of the Rhodependent terminators can be compromised to a great extent without seriously affecting the genome-wide termination function as well as the viability of E.coli. These terminators function optimally only through a NusGdependent assisted recruitment and activation of Rho (NAR, 2014).
- We made a detailed characterization of the Mycobacterium tuberculosis (M. tb.) protein Rv0639 that has been annotated as a homologue of Escherichia coli (E. coli) NusG. It exhibited dramatically different conformational
and functional properties, and hence, we reannotated Rv0639 as a paralogue of NusG, instead of a homologue (Microbiology, 2015
Details of progress made in the current reporting year (April 1, 2014- March 31, 2015)

1) Transcription elongation factor, NusA, is a negative regulator of Rho-dependent termination in Escherichia coli.

NusA is an essential protein that binds to RNA polymerase (RNAP) and also to the nascent RNA, and influences transcription by inducing pausing and facilitating transcription termination / antitermination. Its involvement in Rho-dependent transcription termination has been perceived, but the molecular nature of this involvement is not known.We hypothesized that as both the Rho and the NusA are RNA-binding proteins and has the potential to target the same mRNA, the latter is likely to influence the global Rho-dependent termination. Analyses of the nascent RNAbinding properties and consequent effects on the

Rho-dependent termination functions of specific NusA-RNA binding domain mutants revealed an existence of Rho-NusA direct competition for the overlapping nut (NusA-binding site) and rut (Rho-binding site) sites on the mRNA. This leads to delayed entry of Rho at the rut site, thereby inhibiting the latter's RNA release process. High density tiling micro-array profiles of these NusA mutants revealed that a significant number of operons are up-regulated, and majority of the genes present in these operons are also upregulated when Rho function was compromised. This indicated the existence of NusA-binding sites in different operons, which are also the targets Rho-dependent terminations. Our data strongly argue for a direct competition between NusA and Rho for the access of specific sites on the nascent transcripts in several operons. We propose that this competition enables NusA to function as a global negative regulator of Rho function, which is unlike its role as a facilitator of hairpin-dependent termination.

Figure 1. Model of transcription elongation complex indicating the regions of β-flap and β^{\prime}-dock domains affected due to the N-NusA interaction on the surface of the EC. The regions that were cleaved from S29C of NusA are indicated by arrows. DNA template and the emerging RNA are shown in red and blue. Part of RNA outside the exit channel is shown as dashed line. Flap domain is in green. The flap-tip helix is indicated as spheres on the ribbon diagram of flap domain. The dock domain is in grey. The flap domain mutants affecting the N -antitermination via hindering the domain movement are shown in red sphere. β^{\prime} '- mutants directly affected N -CTD binding are shown as black spheres inside the RNA exit channel.
2) N protein from lambdoid phages transform NusA into an antiterminator by modulating NusA- RNA polymerase flap domain interactions.

Interaction of the lambdoid phage N protein with the bacterial transcription elongation factor NusA is the key component in the process of transcription antitermination. A convex surface of NusA-NTD, located opposite to its RNA polymerase-binding domain (the β-flap domain), directly interacts with N in the antitermination complex. We hypothesized that this N-NusA interaction induces allosteric effects on the NusA-RNAP interaction leading to transformation of NusA into a facilitator of the antitermination process. Here we showed that mutations in β-flap domain specifically defective for N antitermination exhibited altered NusAnascent RNA interaction and have widened RNA exit channel indicating an intricate role of flap domain in the antitermination. Presence of N, reoriented the RNAP binding surface of NusANTD, which changed its interaction pattern with the flap domain. These changes caused significant spatial rearrangement of the β flap as well as the β^{\prime} dock domains to form a more constricted RNA exit channel in the N-modified elongation complex (EC), which might play key role in conertingNusA into a facilitator of the N antitermination (Fig. 1). We propose that in addition to affecting the RNA exit channel and the active center of the EC, β-flap domain
rearrangement is also a mechanistic component in the N antitermination process.
3) Mechanism of NusG-mediated stimulation of Rho-dependent termination.
Transcription elongation factor NusG is an interacting partner of the transcription terminator Rho that stimulates the latter's RNA release process. 21 kDNusG has two domains; the N-terminal domain (NTD) interacts with the elongating RNAP, whereas its C-terminal domain (CTD) binds to Rho. We are now in the process of elucidating the mechanism of NusG-mediated stimulation of Rho-dependent termination.

We have isolated three Rho mutants, 1168 V , R 221 C and P 235 H , that can function in vivo independent of NusG. This indicated that they have acquired properties, which are usually imparted by NusG. Purified Rho mutants exhibited following in vitro properties in the absence of NusG. 1) Early termination with stimulation in RNA release from the stalled elongation complex. 2) Have higher rate of ATPase activity and higher affinity for RNA at the secondary RNA binding site (SBS). However, their primary RNA binding is not affected. These mutations induce altered conformations at the secondary RNA binding domain allosterically. We propose that NusG enhances the stability of Rho SBS-RNA interactions and accelerates the open to close conformations of Rho so that the translocase competent form is attained faster (Fig. 2).

Figure 2. A kinetic scheme for the formation of translocase competent form of Rho upon interaction with the nascent RNA. NusG acts on the isomerization step that converts Rho open state (OC) to its closed state (CC).

Future Plans/directions

The following projects, being pursued in my lab, are in different stages of completion. 1) Mechanism of NusG mediated stimulation of Rho, ii) Involvement of Rho in transcription coupled repair process, iii) global analyses of Rho-dependent termination in different operons, iii) design of peptide inhibitor(s) for Rho and iv) isolation and characterization of different transcription regulators from mycobacteriophages.

Publications

1. Sen R, Chalissery J, Qayyum MZ, Vishalini V and Muteeb G (2014). Nus factors of

Escherichia coli. EcoSal Plus ESP-00082013; doi:10.1128.
3. Shashni R, Qayyum MZ, Vishalini V, Dey D and Sen R (2014). Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho. Nucleic Acids Research 42: 9677-9690.
3. Kalyani BS, Kunamneni R, Wal M, Ranjan A and Sen R (2015). A NusG paralogue from Mycobacterium tuberculosis, Rv0639, has evolved to interact with ribosomal protein S10 (Rv0700) but not to function as a transcription elongation-termination factor. Microbiology 161: 67-83.

अन्य वैज्ञानिक सेवाएँ / सुविधाएँ other scientific services / facilities

LABORATORY ANIMAL FACILITY

Faculty Coordinators	Rashna Bhandari	Staff Scientist\& WT-DBT IndiaAlliance Senior Fellow
	Sanjeev Khosla	Staff Scientist
Other Members	Hole Jayant Pundalikrao	Officer In-Charge
	Sridhar Kavela	Technical Officer
	Suman Komjeti	Technical Assistant
		(Till May 2014)

Objectives

1. The main objective of the Laboratory Animal Facility (LAF) is to breed, maintain and supply laboratory animals to institutional scientists. Breeding and experimentation of all strains of mice is undertaken in individually ventilated caging systems;
2. To support research programmes that promote the health and well being of people and animals by facilitating high quality and scientifically sound research with animals;
3. To comply with regulatory government body (CPCSEA) requirements for animal experimentation and breeding; and
4. To maintain a stable and contained environment for animals and personnel working in the facility, to ensure consistent animal quality and reduce operational costs.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

The CDFD LAF started its activities on July 1, 2011, within the premises of M / s Vimta Labs Limited, located at Genome Valley, Shameerpet, Hyderabad. Infrastructure was established to house mice in individually ventilated cages (IVCs), and conduct standard experimental procedures. All procedures conducted on
animals housed in this facility are approved by the Institutional Animal Ethics Committee (IAEC) constituted by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment, Forest and Climate Change (MoEF \& CC), Govt. of India, at M/s Vimta Labs Ltd. Until March 2014, the facility housed approximately 900 mice of five different strains, and in 2013-14, users were supplied with 821 mice for IAEC approved experimentation.

Details of progress made in the current reporting year (April 1, 2014- March 31, 2015)

During this reporting year, the CDFD LAF has housed five inbred mouse strains, including Ip6k1, Nnat, C57BL/6, FoxN1nu and Balb/c. Mice were bred to expand the colonies and meet users' requirements. Currently this facility has approximately 450 adult and 170 newborn mice housed in 300 IVC cages (Table 1). During the year, 896 mice were supplied to users for IAEC approved experimentation.

Routine IAEC approved procedures conducted on these animals include blood collection for measurement of biochemical parameters, embryo collection for the preparation of embryonic fibroblasts, tail biopsies for genotyping analysis and necropsy for histopathological analysis. Some of the experiments conducted during 2014-15 are highlighted below:

Strains	Total (Male+Female)	Under Breeding (Male+Female)	Supplied during 2013-14
Ip6k1	$40+44$	$15+25$	65
Nnat	$20+29$	$06+11$	28
Balb/c	$35+54$	$07+12$	630
C57BL/6	$24+37$	$05+10$	125
Foxn1u	$31+28$	$05+12$	48

Table 1. Strain-wise break up of adult mice housed at LAF as on March 31,2015, and supplied to users during 2014-15.

- 54 Balb/c mice and 2 Sprague Dawley rats were injected subcutaneously with protein antigens and polyclonal antibodies were generated successfully.
- 65 Ip6k1 and 10 C57BL/6 mice were used for tumour susceptibility analysis, histopathology, and generation of mouse embryonic fibroblasts (MEFs) for further research.
- 239 Balb/c mice were injected intravenously with Candida glabrata for studies on comparative bio-burden of different Candida strains.
- 28 Nnat1 mice were used for measurement of biochemical parameters.
- 177 Balb/c mice were used to study the effect of Mycobacterium tuberculosis protein

PPE18 on LPS-induced endotoxaemia.

- 48 FoxN1nu athymic mice were injected with oncogenic cell lines to study tumour progression and metastasis.
- $86 \mathrm{Balb} / \mathrm{c}$ and $35 \mathrm{C} 57 \mathrm{BL} / 6$ mice were injected with the non-pathogenic mycobacteria, M. smegmatis, expressing some candidate Mtb proteins, to study the in vivo immunomodulatory role of these proteins.
- 37 Balb/c mice were used to study the immunomodulatory roles of recombinant purified proteins of Mycobacterium tuberculosis.
- $80 \mathrm{C} 57 \mathrm{BL} / 6$ and $37 \mathrm{Balb} / \mathrm{c}$ mice were injected with thioglycolate by intra-peritoneal route for the generation of macrophages.
We are currently involved in setting up CDFD's

The IAEC approved projects in progress during this reporting year are mentioned in Table 2.

S. No.	Projects in progress
1	Functional analysis of Neuronatin's second intron by knock out strategy
2	Establishment and histopathological characterization of lp6k1 knockout mice-version 2
3	Signal transduction pathway in immune cells regulating their innate and effecter functions during oxidative stress
4	Protocol for comparative bio-burden study of fifteen strains of Candida glabrata in Balb/c mice
5	Immunization of Balb/c mice for generation of antibodies against few purified recombinant mycobacterial proteins
6	Studying the effect of PPE 18(Rv1196) on LPS induced endotoxaemia in mice
7	Use of nude mice in the study of tumorigenesis
8	Protocol for generation of mouse /rat polyclonal antibodies- version2
9	Isolation of macrophages from Balb/c mice
10	Cryopreservation of mouse embryos by vitrification
11	Understanding the role of Rab711 in phagosome maturation and immune effector signalling
12	Establishment and histopathological characterization of $/ p 6 k 2$ knockout mice
13	Establishment of transgenic mouse model to study the role of Ip6k1 in tumorigenesis
14	Studying the immunomodulatory role of some candidate recombinantly purified proteins of mycobacteria
15	Studying the in vivo immunomodulatory role of some candidate PE/PPE proteins of Mycobacterium tuberculosis recombinantly over expressed in the non pathogenic Mycobacterial strain of M. smegmatis
16	Studying the in vivo epigenetic role of some candidate proteins of Mycobacterium tuberculosis recombinantly over expressed in the non pathogenic Mycobacterial strain of M. smegmatis
17	Protocol for testing tumorogenic and metastatic potential in nude mice
1	

own Experimental Animal Facility which is under construction in the upcoming CDFD campus at Uppal, Hyderabad. We have provided inputs towards the design of the facility, including layout, ventilation system and planned workflow. We have initiated procurement of essential equipment to be installed in this facility, including double door autoclaves, a cage washer, IVC systems, and cage changing stations. An application for registration of the CDFD Experimental Animal Facility was submitted to CPCSEA, MoEF\&CC, and a preliminary inspection by CPCSEA
nominated inspectors was conducted successfully. We are working towards the completion of the facility, its registration with CPCSEA, and the start of operations in the near future.
Future direction
Once the CDFD Experimental Animal Facility is operational, we aim to develop cryopreservation, archiving and retrieval of transgenic mouse strains for future use. Novel methods such as the CRISPR/ Cas system will be developed to generate our own transgenic and knockout mice.

BIOINFORMATICS

Head
Other Members
HA Nagarajaram
R Chandra Mohan
K Prashanthi

Staff Scientist
Technical Officer
Technical Assistant

Objectives

1. To maintain various servers, workstations, PCs, printers and other peripheral devices;
2. To maintain the CDFD website, to provide web based services and e-mail services;
3. To maintain Institute-wide LAN as well as the internet connectivity;
4. To secure the CDFD network from security threats;
5. To integrate Institute's network into National and International grid computing networks; and
6. To coordinate the procurement process of servers, workstations, PCs, laptops, printers, other peripheral devices and software required.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

- Activities related to installation, administration and maintenance of servers which providevarious services, databases and computational jobs were undertaken.
- Internet, web, email-services were provided with enhanced functionalities.
- High-end PCs, workstations, laptops, scanners and printers were procured and installed.
- Existing PC Annual Maintenance Contract was renewed
- Awarded Annual Maintenance Contract of Zimbra email server to M/s Callippus Solutions Private Ltd.
- Configured Zimbra Email server with a failsafe server.
- Initiated the process of procuring next
generation firewall, high end intelligent switches.
- Renewed the MoU with CDAC for availing GARUDA-grid facility.
- Coordinating the process of procurement and setup of server with workstations and backup facility for CODIS project.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

- Activities related to installation, administration and maintenance of servers which provide various services, databases and computational jobs were undertaken.
- Internet, web, email-services have been provided with enhanced functionalities.
- High-end PCs, workstations, laptops, scanners and printers were procured and installed.
- PC Annual Maintenance Contract was awarded to a new vendor M/s Accel Frontline Limited.
- Existing AMC of Zimbra email server with M/s Callippus Solutions Private Ltd. was renewed.
- Upgraded zimbra email server to the latest version.
- Coordinating the process of procurement and completed the installation setup of server with workstations and backup facility for CODIS project.
- Renewed the MoU with CDAC for availing GARUDA-grid facility.
- Procurednext generation firewall and is currently getting installed.
- Upgraded the BSNL internet leased line bandwidth to 25 Mbps .

INSTRUMENTATION

Head
Other Members
Raghavendrachar J
RN Mishra
SD Varalaxmi
M Laxman
Satyanarayana
T Ramakrishna Reddy

Staff Scientist
Senior Technical Officer
Technical Officer
Technical Officer
Technical Officer
Technical Assistant

Objectives

To maintain repair and service all the equipment in laboratory. To provide pre-installation requirements for new instruments and to coordinate with the manufacturers / their agents in Installation and warranty service of the new instruments. Also to provide the reports on the newly arrived instruments and to follow up with the suppliers for short shipped items.

Summary of work done until the beginning of this reporting year (upto March 31, 2014)

During the year 2013-14, we have installed 61 new equipments like inverted microscopes, PCR machines, refrigerated centrifuges, shakingwaterbaths, $-20^{\circ} \mathrm{C}$ freezers, cooled incubator, refrigerators etc. and we have also completed 498 work orders for repair \& maintenance of various laboratory equipments.

We were involved in re-organizing the first floor Lab area and have shifted and re-installed many instruments including Illumina Bead Xpress Next Generation Genotyping System, pyrosequencer, laminar hoods, fume hood etc.

In addition, we were involved in organizing the audio \& visual requirements for presentations in various seminars, lectures and workshops, Foundation Day lectures, distinguished scientist lectures. We were actively involved in conducting the Guha Research Conference at ArakuVally and Vizag from $7_{\text {th }}$ to 10 December 2013 and "Young Investigator Meeting" at Ramoji Film city, Hyderabad from $8^{\text {th }}$ to $12^{\text {th }}$ February 2014. We have maintained most of the equipment with maximum uptime in the Laboratory. Most of the Instruments are maintained by our Instrumentation staff, thereby saving on the
expensive AMCs and with very little downtime of the equipment.

Details of progress made in the current reporting year (April 1, 2014 - March 31, 2015)

During the year 2014-15, we have installed 57 new equipmentslike color doppler ultrasound scanner at NIMS, automatic vertical autoclaves, IP-Star automated robotic work station, upright microscopes, 2 Nos. of laser scanning confocal microscopes, FLA 9500 phosphor imaging system, bio-ruptors, PCR machines, refrigerated centrifuges, shaking water baths, -200 C freezers, cooled incubator, refrigerators etc. and we have also completed 503 work orders for repair \& maintenance of various laboratory equipments.

We were involved in re-organizing and installing the lab tables for the "Laboratory for Genomics and Profiling Applications"(LGPA) in the basement and install small equipments also.
We were involved in organizing the CODIS software installation and training to the Laboratory of DNA Fingerprinting Services (LDFS) at CDFD Library from $5^{\text {th }}$ October 2014 to $12^{\text {th }}$ October 2014.

In addition, we were involved in organizing the audio \& visual requirements for presentations in various seminars, lectures and workshops, Foundation Day lectures, distinguished scientist lectures. We have maintained most of the equipment with maximum uptime in the Laboratory.

Most of the instruments are maintained by our Instrumentation staff, thereby saving on the expensive AMCs and with very little downtime of the equipment.

प्रकाशन Publications

RESEARCH PAPERS

* Publications of adjunct faculty of CDFD in which CDFD's affiliation is included.
** Work done elsewhere
A. Publications during the year 2014

1. Abraham PR, Latha GS, Valluri VL and Mukhopadhyay S (2014). Mycobacterium tuberculosis PPE protein Rv0256c induces strong B cell response in tuberculosis patients. Infection, Genetics and Evolution 22: 244-249.
2. Adduri RSR, Katamoni R, Pandilla R, Madana SN, Paripati AK, Kotapalli V and Bashyam MD (2014). TP53 Pro72 allele is enriched in oral tongue cancer and frequently mutated in esophageal cancer in India. PLoS One e114002. doi: 10.1371/journal. pone. 0114002.
3. Adduri RSR, Kotapalli V, Gupta NA, Gowrishankar S, Srinivasulu M, Ali MM, Rao S, Uppin SG, Nayak UK, Dhagam S, Chigurupati MV and Bashyam MD (2014). P53 nuclear stabilization is associated with FHIT loss and younger age of onset in squamous cell carcinoma of oral tongue. BMC Clinical Pathology 14:37.
4. Aggarwal S, Coutinho MF, Dalal AB, Mohamed Nurul Jain SJ, Prata MJ and Alves S (2014). Prenatal skeletal dysplasia phenotype in severe MLII alpha/beta with novel GNPTAB mutation. Gene 542: 266268.
5. Ali A, Veeranki SN and Tyagi S (2014). A SET-domain-independent role of WRAD complex in cell-cycle regulatory function of mixed lineage leukemia. Nucleic Acids Research 42:7611-7624.
6. Archak S and Nagaraju J (2014). Computational analyses of protein coded by rice (Oryza sativa japonica) cDNA (GI: 32984786) indicate lectin like $\mathrm{Ca}(2+$) binding properties for Eicosapenta Peptide Repeats (EPRs). Bioinformation 10: 63-67.
7. Bairwa G, Rasheed M, Taigwal R, Sahoo R and Kaur R (2014). GPI (glycosylphosphatidylinositol)-linked aspartyl proteases regulate vacuole homoeostasis in Candida glabrata. Biochemical Journal 458: 323-334.
8. Ballantyne KN , Ralf A , Aboukhalid R , Achakzai NM, Anjos MJ, Ayub Q, Balazic J, Ballantyne J, Ballard DJ, Berger B, Bobillo C, Bouabdellah M, Burri H, Capal T, Caratti S, Cárdenas J, Cartault F, Carvalho EF, Carvalho M, Cheng B, Coble MD, Comas D, Corach D, D'Amato ME, Davison S, de Knijff P, De Ungria MC, Decorte R, Dobosz T, Dupuy BM, Elmrghni S, Gliwiński M, Gomes SC, Grol L, Haas C, Hanson E, Henke J, Henke L, Herrera-Rodríguez F, Hill CR, Holmlund G, Honda K, Immel UD, Inokuchi S, Jobling MA, Kaddura M, Kim JS, Kim SH, Kim W, King TE, Klausriegler E, Kling D, Kovačević L, Kovatsi L, Krajewski P, Kravchenko S, Larmuseau MH, Lee EY, Lessig R, Livshits LA, Marjanović D, Minarik M, Mizuno N, Moreira H, Morling N, Mukherjee M, Munier P, Nagaraju J, Neuhuber F, Nie S, Nilasitsataporn P, Nishi T, Oh HH, Olofsson J, Onofri V, Palo JU, Pamjav H, Parson W, Petlach M, Phillips C, Ploski R, Prasad SPR, Primorac D, Purnomo GA, Purps J, Rangel-Villalobos H, Rębała K, Rerkamnuaychoke B, Gonzalez DR, Robino C, Roewer L, Rosa A, Sajantila A, Sala A, Salvador JM, Sanz P, Schmitt C, Sharma AK, Silva DA, Shin KJ, Sijen T, Sirker M, Sivakova D, Skaro V, Solano-Matamoros C, Souto L, Stenzl V, Sudoyo H, SyndercombeCourt D, Tagliabracci A, Taylor D, Tillmar A, Tsybovsky IS, Tyler-Smith C, van der Gaag KJ, Vanek D, Völgyi A, Ward D, Willemse P, Yap EP, Yong RY, Pajnic IZ and Kayser M (2014). Toward male individualization with rapidly mutating y-chromosomal short tandem repeats. Human Mutation 35: 10211032.
9. Bashyam MD, Chaudhary AK, Kiran M, Nagarajaram HA, Devi RR, Ranganath P, Dalal A, Bashyam L, Gupta N, Kabra M, Muranjan M, Puri RD, Verma IC, Nampoothiri S and Kadandale JS (2014). Splice, insertiondeletion and nonsense mutations that perturb the phenylalanine hydroxylase transcript cause phenylketonuria in India. Journal of Cellular Biochemistry 115: 566-574.
10. Bashyam MD, Chaudhary AK, Kiran M, Reddy V, Nagarajaram HA, Dalal A, Bashyam L, Suri D, Gupta A, Gupta N, Kabra M, Puri RD, RamaDevi R, Kapoor S and Danda S (2014). Molecular analyses of novel ASAH1 mutations causing Farber lipogranulomatosis: analyses of exonic splicing enhancer inactivating mutation. Clinical Genetics 86: 530-538.
11. Basu A, Dasari V, Mishra RK and Khosla S (2014). The CpG island encompassing the promoter and first exon of human DNMT3L gene is a $\mathrm{PcG} / \mathrm{TrX}$ response element (PRE). Plos One 9: e93561.
12. BasuBaulTS, KunduS,Linden A, Raviprakash N, Manna SK and Guedes da Silva MF (2014).Synthesis and characterization of some water soluble $\mathrm{Zn}(\mathrm{II})$ complexes with (E)-N-(pyridin-2-ylmethylene)arylamines that regulate tumour cell death by interacting with DNA. Dalton Transactions 43: 1191-1202.
13. Bidchol AM, Dalal A, Shah H, S S, Nampoothiri S, Kabra M, Gupta N, Danda S, Gowrishankar K, Phadke SR, Kapoor S, Kamate M, Verma IC, Puri RD, Sankar VH, Devi AR, Patil SJ, Ranganath P, Jain SJ, Agarwal M, Singh A, Mishra P, Tamhankar PM, Gopinath PM, Nagarajaram HA, Satyamoorthy K and Girisha KM (2014). GALNS mutations in Indian patients with mucopolysaccharidosis IVA. American Journal of Medical Genetics A164A: 27932801
14. Borah S, Shivarathri R, Srivastava VK, Ferrari S, Sanglard D and Kaur R (2014). Pivotal role for a tail subunit of the RNA polymerase II mediator complex CgMed2 in azole tolerance and adherence in Candida glabrata. Antimicrobial Agents and Chemotherapy 58: 5976-5986.
15. Chaudhary N and Maddika S (2014). WWP2WWP1 ubiquitin ligase complex coordinated by PPM1G maintains the balance between cellular p73 and $\Delta \mathrm{Np} 73$ levels. Molecular and Cellular Biology 34: 3754-3764.
16. *Chittem L, Bhattacharjee S and Ranganath P (2014). Craniosynostosis in a child with I-cell disease: the need for genetic analysis before contemplating surgery in craniosynostosis. Journal of Pediatric Neurosciences 9: 33-35.
17. Dalal A (2014). Molecular cytogenetic characterization of chromosomal rearrangements - utility in genetic counseling and research. Molecular Cytogenetics (Suppl 1): I12. doi.10.1186/1755-8166-7-S1-I12.
18. Das T, Sahu NP, Chakraborty SK, Chatterjee N, Mohammed MS, Dalvi RS, Baruah K and Pal AK (2014). Ultrastructural alterations in the gills of Labeo rohita fingerlings exposed to thermal extremes. Anatomia Histologia Embryologia 43: 75-80.
19. Dutta UR, Ponnala R and Dalal A (2014). A novel de novo balanced reciprocal translocation $\mathrm{t}(18 ; 22)$ associated with recurrent miscarriages: a case report. Journal of Reproduction \& Infertility 15: 113-116.
20. Dutta UR, Vempally S, Ranganath P and Dalal A (2014). A novel combined 15q11.2 duplication and a bisatellited supernumerary marker derived from chromosome 22: molecular characterization of the marker. Gene 539: 162-167.
21. Hegde SR, Pal K and Mande SC (2014). Differential enrichment of regulatory motifs in the composite network of protein-protein and gene regulatory interactions. BMC Systems Biology 8: 26.
22. Jangamreddy JR, Panigrahi S, Lotfi K, Yadav M, Maddika S, Tripathi AK, Sanyal S and Los MJ (2014). Mapping of apoptin-interaction with BCR-ABL1, and development of apoptin-based targeted therapy. Oncotarget 5: 7198-7211.
23. Kantaputra PN, Kayserili H, Guven Y, Kantaputra W, Balci MC, Tanpaiboon P, Tananuvat N, Uttarilli A and Dalal A (2014). Clinical manifestations of 17 patients affected with mucopolysaccharidosis type VI and eight novel ARSB mutations. American Journal of Medical Genetics 164A: 14431453.
24. Kantaputra PN, Kayserili H, Guven Y, Kantaputra W, Balci MC, Tanpaiboon P, Uttarilli A and Dalal A (2014). Oral manifestations of 17 patients affected with mucopolysaccharidosis type VI. Journal of Inherited Metabolic Diseases 37: 263-268.
25. Khursheed M and Bashyam MD (2014). Apico-basal polarity complex and cancer. Journal of Biosciences 39: 145-155.
26. **Lindow S, Newman K, Chatterjee S, Baccari C, Lavarone AT and Ionescu M (2014). Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of Pierce's disease. Molecular Plant Microbe Interactions 27: 244-254.
27. Love JM, Prosser D, Love DR, Chintakindi KP, Dalal AB and Aggarwal S (2014). A novel glycine decarboxylase gene mutation in an Indian family with nonketotic hyperglycinemia. Journal of Child Neurology 29: 122-127.
28. Mahali SK, Verma N and Manna SK (2014). Advanced glycation end products induce lipogenesis: regulation by natural xanthone through inhibition of ERK and NF-kB. Journal of Cellular Physiology 229: 1972-1980.
29. *Mon H, Lee JM, Mita K, Goldsmith MR and Kusakabe T(2014). Chromatin-induced spindle assembly plays an important role in metaphase congression of silkworm holocentric chromosomes. Insect Biochemistry and Molecular Biology 45: 40-50.
30. Mudunuri SB, Patnana S and Nagarajaram HA (2014). MICdb3.0: a comprehensive resource of microsatellite repeats from prokaryotic genomes. Database doi:10.1093/ database/bau005.
31. Nagaraju J, Gopinath G, Sharma V and Shukla JN (2014).Lepidopteran sex determination: A cascade of surprises. Sexual Development 8: 104-112
32. Nandagopalan RS, Phadke SR, Dalal AB and Ranganath P (2014). Novel mutations in PRG4 gene in two Indian families with camptodactyly-arthropathy- coxa vara- pericarditis (CACP) syndrome. Indian Journal of Medical Research 140: 221-226.
33. Naushad SM, Krishnaprasad C and DeviARR (2014). Adaptive developmental plasticity in methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism limits its frequency in South Indians. Molecular Biology Reports 41: 3045-3050.
34. Pandey SD, Choudhury M, Yousuf S, Wheeler PR, Gordon SV, Ranjan A and Sritharan M (2014). Iron-regulated protein

HupB of Mycobacterium tuberculosis positively regulates siderophore biosynthesis and is essential for growth in macrophages. Journal of Bacteriology 196: 1853-1865.
35. Patil SJ, Rai GK, Bhat V, Ramesh VA, Nagarajaram HA, Matalia J and Phadke SR (2014). Distal arthrogryposis type 5D with a novel ECEL1 gene mutation. American Journal of Medical Genetics 164A: 28572862.
36. Pereira J, Porto-Figueira P, Cavaco C, Taunk K, Rapole S, Dhakne R, Nagarajaram H and Camara JS (2014). Breath analysis as a potential and non-invasive frontier in disease diagnosis: An overview. Metabolites 5: 3-55.
37. Phulera S, Akif M, Sardesai AA and Mande SC (2014). Redox proteins of Mycobacterium tuberculosis. Journal of the Indian Institute of Science 94: 127-137.
38. Pradhan BB and Chatterjee S (2014). Reversible non-genetic phenotypic heterogeneity in bacterial quorum sensing. Molecular Microbiology 92: 557-569.
39. Rachita HR and Nagarajaram HA (2014). Viral proteins that bridge unconnected proteins and components in the human PPI network. Molecular BioSystems 10: 24482458.
40. Ram BM and Ramakrishna G (2014). Endoplasmic reticulum vacuolation and unfolded protein response leading to paraptosis like cell death in cyclosporine A treated cancer cervix cells is mediated by cyclophilin B inhibition. Biochimica et Biophysica Acta 1843: 2497-2512.
41. Raman R, Kongara R, Kotapalli V, Gowrishankar S, Sastry RA, Nagari B and Bashyam MD (2014). Pathological stage significantly predicts survival in colorectal cancer patients: a study from two tertiary care centers in India. Colorectal Cancer 3: 265-275.
42. Raman R, Kotapalli V, Vamsy M, Patnaik SC, Srinivasulu M and Bashyam MD (2014). A positive family history of cancer or lifestyle factors may not explain the high incidence of early-onset colorectal cancer in India. Colorectal Cancer 3: 409-416.
43. Raman R, Kotapalli V, Adduri R, Gowrishankar S, Bashyam L, Chaudhary A,

Vamsy M, Patnaik S, Srinivasulu M, Sastry R, Rao S, Vasala A, Kalidindi N, Pollack J, Murthy S and Bashyam M (2014). Evidence for possible non-canonical pathway(s) driven early-onset colorectal cancer in India.
Molecular Carcinogenesis 53: E181-E186; doi:10.1002/mc.21976.
44. *Ramasarma T (2014). Trendy science research communications. Current Science 106: 506-508.
45. Raviprakash N and Manna SK (2014). Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors. British Journal of Pharmacology 171: 3339-3351.
46. Sackton TB, Corbett-DetigRB, Nagaraju J, Vaishna L, Arunkumar KP and Hartl DL (2014). Positive selection drives faster-Z evolution in silkmoths. Evolution 68: 23312342.
47. Saikumar S, Gouda PK, Saiharini A, Varma CMK, Vineesha O, Padmavathi G and Shenoy VV (2014). Major QTL for enhancing rice grain yield under lowland reproductive drought stress identified using an O. sativa/O. glaberrima introgression line. Field Crops Research 163: 119-131.
48. Salvemini M, Arunkumar KP, Nagaraju J, Sanges R, Petrella V, Tomar A, Zhang H, Zheng W and Saccone G (2014). De novo assembly and transcriptome analysis of the Mediterranean fruit fly Ceratitis capitata early embryos. PLoS One 9: e114191; doi: 10.1371/journal.pone. 0114191.
49. Saranathan R, Tomar A, Sudhakar P, Arunkumar KP and Prashanth K (2014). Draft genome sequence of a multidrug-resistant Acinetobacter baumannii PKAB07 clinical strain from India belonging to sequence type 195. Genome Announcements 2: e0018414; doi: 10.1128/genomeA.00184-14.
50. Satyavathi VV, Minz A and Nagaraju J (2014). Nodulation: an unexplored cellular defense mechanism in insects. Cellular Signalling 26: 1753-1763.
51. Satyavathi VV, Raju PJ, Basha KI, Basavaraja HK and Nagaraju J (2014). Genesis and performance evaluation of baculovirus resistant transgenic silkworm
hybrids. Sericologia 54: 181-187.
52. Sen R, Chalissery J, Qayyum MZ, Vishalini V and Muteeb G (2014). Nus factors of Escherichia coli. EcoSal Plus ESP-00082013; doi:10.1128.
53. Shah AH, Singh A, Dhamgaye S, Chauhan N, Vandeputte P, Suneetha KJ, Kaur R, Mukherjee PK, Chandra J, Ghannoum MA, Sanglard D, Goswami SK and Prasad R (2014). Novel role of a family of major facilitator transporters in biofilm development and virulence of Candida albicans. Biochemical Journal 460: 223-235.
54. Sharma V and Nandineni MR (2014). Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems. Molecular Phylogenetics and Evolution 73: 10-17.
55. Shashni R, Qayyum MZ, Vishalini V, Dey D and Sen R (2014). Redundancy of primary RNA-binding functions of the bacterial transcription terminator Rho. Nucleic Acids Research 42: 9677-9690.
56. Singh CP, Singh J and Nagaraju J (2014). bmnpv-miR-3 facilitates BmNPV infection by modulating the expression of viral P6.9 and other late genes in Bombyx mori. Insect Biochemistry and Molecular Biology 49: 59-69.
57. Singh CP, Vaishna RL, Kakkar A, Arunkumar KP and Nagaraju J (2014). Characterization of antiviral and antibacterial activity of Bombyx mori seroin proteins. Cellular Microbiology 16: 1354-1365.
58. Sinha A and Nagarajaram HA (2014). Nodes occupying central positions in human tissue specific PPI networks are enriched with many splice variants. Proteomics 14: 2242-2248.
59. Sreejit G, Ahmed A, Parveen N, Jha V, Valluri VL, Ghosh S and Mukhopadhyay S(2014). The ESAT-6 protein of Mycobacterium tuberculosis interacts with beta-2microglobulin ($\beta 2 \mathrm{M}$) affecting antigen presentation function of macrophage. PLoS Pathogens 10: e1004446; doi: 10.1371/ journal.ppat. 1004446.
60. *Srinivas BH, Puligopu AK, Sukhla D and Ranganath P (2014). Rare association of spondylocostal dysostosis with split cord malformations type II: a case report and a brief review of literature. Journal of Pediatric Neurosciences 9: 142-144.
61. Srivastava VK, Suneetha KJ and Kaur R (2014). A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domaincontaining protein in iron homeostasis and virulence in Candida glabrata. Biochemical Journal 463: 103-114.
62. Stephen J, Shukla A, Dalal A, Girisha KM, Shah H, Gupta N, Kabra M, Dabadghao P and Phadke SR (2014). Mutation spectrum of COL1A1 and COL1A2 genes in Indian patients with osteogenesis imperfecta. American Journal of Medical Genetics 164A: 1482-1489.
63. *Sukalo M, Fiedler A, Guzmán C, Spranger S, Addor MC, McHeik JN, Benavent MO, Cobben JM, Gillis LA, Shealy AG, Deshpande C, Bozorgmehr B, Everman DB, Stattin EL, Liebelt J, Keller KM, Bertola DR, van Karnebeek CD, Bergmann C, Liu Z, Düker G, Rezaei N, Alkuraya FS, Oğur G, Alrajoudi A, Venegas-Vega CA, Verbeek NE, Richmond EJ, Kirbiyik O, Ranganath P, Singh A, Godbole K, Ali FA, Alves C, Mayerle J, Lerch MM, Witt H and Zenker M (2014). Mutations in the human UBR1 gene and the associated phenotypic spectrum. Human Mutation 35: 521-531.
64. Sundaram RM, Chatterjee S, Oliva R, Laha GS, Cruz CV, Leach JE and Sonti R (2014). Update on bacterial blight of rice: fourth international conference on bacterial blight. Rice 7: 12-14.
65. Tsurusaki Y, Okamoto N, Ohashi H, Mizuno S, Matsumoto N, Makita Y, Fukuda M, Isidor B, Perrier J, Aggarwal S, Dalal AB, Al-Kindy A, Liebelt J, Mowat D, Nakashima M, Saitsu H, Miyake N and Matsumoto N (2014). Coffin-Siris syndrome is a SWI/SNF complex disorder. Clinical Genetics 85: 548-554.
66. Vemireddy LR, Satyavathi VV, Siddiq EA and Nagaraju J (2014). Review of methods for the detection and quantification of adulteration of rice: Basmati as a case study. Journal of Food Science and Technology doi : 10.1007/s13197-014-1579-0.

B. Publications in 2015 (Till March 31, 2015)

67. *Arora R, Aggarwal S and Deme S (2015). Ghosal hematodiaphyseal dysplasia-a concise review including an illustrative patient. Skeletal Radiology 44: 447-450.
68. Aggarwal S, Kar A, Bland P, Kelsell D and Dalal A (2015). Novel ABCA12 mutations in harlequin ichthyosis: A journey from photo diagnosis to prenatal diagnosis. Gene 556: 254-256.
69. Dalal AB, Ranganath P, Phadke SR, Kabra M, Danda S, Puri RD, Sankar VH, Gupta N, Patil SJ, Mandal K, Tamhankar P, Aggarwal S and Agarwal M (2015). Prenatal diagnosis in India is not limited to sex selection. Genetics in Medicine 17: 88.
70. Das Bhowmik A, Rangaswamaiah S, Srinivas G and Dalal AB (2015). Molecular genetic analysis of trinucleotide repeat disorders (TRDs) in Indian population and application of repeat primed PCR. European Journal of Medical Genetics 58: 160-167.
71. Delma CR, Somasundaram ST, Srinivasan GP, Khursheed M, Bashyam MD and Aravindan N (2015). Fucoidan from Turbinaria conoides: a multifaceted 'deliverable' to combat pancreatic cancer progression. International Journal of Biological Macromolecules 74: 447-457.
72. Dutta UR, Hansmann I and Schlote D (2015). Molecular cytogenetic characterization of a familial pericentric inversion 3 associated with short stature. European Journal of Medical Genetics 58: 154-159.
73. Ghosh C, Prakash NR, Manna SK, Bishayi B. (2015) Presence of toll like receptor-2 in spleen, lymph node and thymus of Swiss albino mice and its modulation by Staphylococcus aureus and bacterial lipopolysaccharide. Indian Journal of Experimental Biology 53: 82-92.
74. Gowrishankar J (2015). End of the beginning: elongation and termination features of alternative modes of chromosomal replication initiation in bacteria. PLoS Genetics 11: e1004909.
75. *Gupta D, Gupta V, Singh V, Chawla S, Ranganath P and Phadke SR (2015). Study of polymorphisms in CFH, ARMS2
and HTRA1 genes as potential risk factors for age-related macular degeneration in Indian patients. International Journal of Bioassays 4: 3747-3752.
76. Kalyani BS, Kunamneni R, Wal M, Ranjan A and Sen R (2015). A NusG paralogue from Mycobacterium tuberculosis, Rv0639, has evolved to interact with ribosomal protein S10 (Rv0700) but not to function as a transcription elongation-termination factor. Microbiology 161: 67-83.
77. Kiran S, Anwar T, Kiran M and Ramakrishna G (2015). Sirtuin 7 in cell proliferation, stress and disease: rise of the seventh sirtuin. Cellular Signalling 27: 673-682.
78. Kiran S, Oddi V and Ramakrishna G. (2015). Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response. Experimental Cell Research 331: 123-141.
79. Parine NR, Lakshmi P, Kumar D, Shaik JP, Alanazi M and Pathan AAK (2015). Development and characterisation of nine polymorphic microsatellite markers for Tephrosia calophylla Bedd. (Fabaceae). Saudi Journal of Biological Sciences 22: 164-167.
80. Rachita HR and Nagarajaram HA (2015). Molecular principles of human virus proteinprotein interactions. Bioinformatics 31: 1025-1033.
81. Rai MN, Sharma V, Balusu S and Kaur R (2015): An essential role for phosphatidylinositol 3-kinase in the inhibition of phagosomal maturation, intracellular survival and virulence in Candida glabrata. Cellular Microbiology 17: 269-287.
82. *Ramasarma T, Rao AV, Devi MM, Omkumar RV, Bhagyashree KS and Bhat SV (2015). New insights of superoxide dismutase inhibition of pyrogallol autoxidation. Molecular and Cellular Biochemistry 400: 277-285.
83. Stephen J, Girisha KM, Dalal A, Shukla A, Shah H, Srivastava P, Kornak U and Phadke SR (2015). Mutations in patients with osteogenesis imperfecta from consanguineous Indian families. European Journal of Medical Genetics 58: 21-27.
84. Thota SG, Unnikannan CP, Thampatty

SR, Manorama R and Bhandari R (2015). Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae. Biochemical Journal 466: 105-114.
85. Yousuf S, Angara R, Vindal V and Ranjan A (2015). Rv0494 is a starvation-inducible, auto-regulatory FadR like regulator from Mycobacterium tuberculosis. Microbiology 161: 463-476.
C. Publications in Press (as on March 31, 2015)
86. *Aggarwal S and Phadke SR. Medical genetics and genomic medicine in India: current status and opportunities ahead. Molecular Genetics and Genomic Medicine.
87. Anusha U, Ranganath P, Jamal Md NJS, Krishna Prasad C, Anupam S, Verma IC, Phadke SR, Puri RD, Danda S, Muranjan MN, Jevalikar G, Nagarajaram HA and Dalal AB. Novel mutations of the ARSB gene in Indian patients with Mucopolysaccharidosis Type IV. Indian Journal of Medical Research.
88. Bashyam MD, Kotapalli V, Raman R, Chaudhary AK, Yadav BK, Gowrishankar S, Uppin SG, Kongara R, Sastry RA, Vamsy M, Patnaik S, Rao S, Dsouza S, Desai D and Tester A. Evidence for presence of mismatch repair gene expression positive Lynch syndrome cases in India. Molecular Carcinogenesis doi: 10.1002/mc. 22244.
89. Bhat KH and Mukhopadhyay S. Macrophage takeover and the host-bacilli interplay during tuberculosis. Future Microbiology.
90. Bidchol AM, Dalal A, Trivedi R, Shukla A, Nampoothiri S, Sankar VH, Danda S, Gupta N, Kabra M, Hebbar SA, Bhat RY, Matta D, Ekbote AV, Puri RD, Phadke SR, Gowrishankar K, Aggarwal S, Ranganath P, Sharda S, Kamate M, Datar CA, Bhat K, Kamath N, Shah H, Krishna S, Gopinath PM, Verma IC, Nagarajaram HA, Satyamoorthy K and Girisha KM. Recurrent and novel GLB1 mutations in India. Gene.
91. Dalal A, Aneek Das Bhowmik, Divya Agrawal and Phadke SR. Exome sequencing and homozygosity mapping help in identification of genetic etiology for spastic ataxia in a consanguineous family. Indian Journal of Medical Research.
92. Pasha J, Kandagatla B, Sen S, Seerapu GPK, Bujji S, Haldar D, Nanduri S and

Oruganti S (2015). Amberlyst-15 catalyzed Povarov reaction of N -arylidene-1H-indazol6 -amines and indoles: a greener approach to the synthesis of exo-1,6,7,7a,12,12a-hexahydroindolo[3,2-c]pyrazolo[3,4-f] quinolines as potential sirtuin inhibitors. Tetrahedron Letters.
93. Rai R, Javvadi S and Chatterjee S. Cellcell signalling promotes ferric iron uptake in Xanthomonas oryzae pv. oryzicola that contribute to its virulence and growth inside rice. Molecular Microbiology doi: 10.1111/ mmi. 12965.
94. Shantibala T, Victor T, Luikham R, Arunkumar KP, Debaraj Sharma H, Lokeshwari RK and Kim I. Complete mitochondrial genome of the wild eri silkworm, Samia canningi (Ledpidoptera: Saturniidae). Mitochondrial DNA.
95. Sharma G, Upadhyay S, Srilalitha M, Nandicoori VK and Khosla S. The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone $\mathrm{H} 3 / \mathrm{H} 4$ binding. Nucleic Acids Research.
96. Singh S, Kumar PU, Thakur S, Kiran S, Sen B, Sharma S, Rao VV, Poongothai AR and Ramakrishna G. Expression/localization patterns of sirtuins (SIRT1, SIRT2, and SIRT7) during progression of cervical cancer and effects of sirtuin inhibitors on growth of cervical cancer cells. Tumor Biology.
97. Srivastava VK, Suneetha KJ and Kaur R. The mitogen-activated protein kinase CgHog1 is required for iron homeostasis, adherence and virulence in Candida glabrata. The FEBS Journal.
D. Other Publications

1. Arunkumar KP (2014). Book review of the Annual Review of Genetics, 2013. Bonnie L. Bassler et al. (eds). Current Science 106: 1755-1757.
2. Arunkumar KP (2014). Role of Biotechnology in seri-development. Indian Silk 5: 74-76.
3. Dalal A (2014). Phenylketonuria: Past, present and future. Genetics Clinics 7: 19-24.
4. Dutta UR (2014). Precision in chromosome identification with leads in molecular cytogenetics: an illustrated review. Journal of Pediatric Genetics doi: 10.3233/PGE-14083.
5. Kasbekar DP (2014). Editorial. Lesser models. Journal of Biosciences 39: 1.
6. Kasbekar DP (2014). Sidelights. Are any fungal genes nucleus-limited? Journal of Biosciences 39: 341-346.
7. Ranganath P and Dalal A (2014). Quality issues in medical genetics. Genetics in Clinical Practice (1st Edition) 237-243.
8. Ranganath P (2014). Approach to Intellectual Disability. Genetic Clinics 7: 12-18.
9. Ranganath P (2014). Approach to a child with dysmorphism/ congenital malformation. Genetic Clinics 7: 11-17.
10. Ranganath P and Rai GK (2014). Marfan Syndrome: Recent advances in diagnosis and management. Genetic Clinics 7: 6-10.
11. Satyavathi VV (2014). International exposure to GM research. South Asia Biosafety Program Newsletter 11: 2.
12. Kasbekar DP (2015). What have we learned by doing transformations in Neurospora tetrasperma? Genetic transformation systems in fungi. Springer, Switzerland 47-52.
13. Kasbekar DP (2015). Editorial. Via media. Journal of Biosciences 40: 1.
14. Ranganath P (2015). Patterns of Inheritance. In: Postgraduate Textbook of Pediatrics. Ed. Piyush Gupta. Jaypee Brothers Medical Publishers 24-31.
E. Patents granted
15. Hasnain SE. Antigenic peptides.

European Patent Application No. 05779727.6
Patent No.: 1809658
Date of grant: June 25, 2014

मानव संसाधन विकास Human Resource Development

PhD Program

For the PhD program CDFD invites applications from highly motivated candidates willing to take up challenges in modern biology, usually in the month of March. Keeping in view the interdisciplinary nature of modern biology, the Centre especially encourages persons from different scientific disciplines to take up challenges in these areas. Those admitted as Junior Research Fellows (JRFs) are encouraged to take admission in the PhD program of Manipal University or University of Hyderabad.

The eligibility for the program is MBBS or Masters degree in any branch of Science, Technology or Agriculture from a recognized University or Institute. Candidates (other than MBBS graduates) must have cleared National Eligibility Test (NET) with valid CSIR-JRF or UGC-JRF or DBT-JRF or ICMR-JRF or ICARJRF or INSPIRE-PhD or JEST or GATE (All India top 50 ranks of all Chemistry, Life Sciences and Biotechnology steams). Those who have appeared for their final semester examination, but are awaiting results, are also eligible to apply. Those with independent Senior Research Fellowships (SRF) from CSIR can also apply. As the number of applicants outnumbers the seats available each year by a ratio of 1:40 or more, eligible candidates are invited for a written examination followed by interviews of short-listed candidates.

As of March 31, 2015 the Centre has 108 Research Scholars working for their doctorates in
different areas of research. In the reporting year 4 of the Research Scholars have completed PhD and are pursuing careers in science elsewhere in India or abroad.

Postdoctoral Program

In addition to the JRF program, the Centre also carries out training at the post-doctoral level. The post-doctoral fellows are funded through the extramural grants that CDFD receives. Some postdoctoral fellows are also selectedcompetitively by the DST fast track young scientist scheme, or the DBT post-doctoral fellowship program.

Summer Training Program

CDFD provides admissions to summer training program to those students who are supported either by the Indian Academy of Science, Bangalore or Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore or the Kishore Vigyanik Protsahan Yojna, New Delhi. In the reporting year 20 students received summer training at the Centre.

Training for students from BITS, Pilani

CDFD has an agreement with BITS, Pilani to provide project training to their M.Sc. students. Under this programme, the students spend 6 months to 1 year at CDFD and work on active projects being carried out here. The project work helps the students in gaining handsonexperience in modern biology. In the reporting year, 5 students were given the opportunity to avail training under this programme.
Research Scholars Conferred PhD Degree During the Reporting Period

Scholar	Supervisor	Date of viva voce examination	Title of thesis
Maruti Nandan Rai	Rupinder Kaur	15.04 .2014	Study of host-pathogen interaction in Candida glabrata
Ratheesh R	MD Bashyam	13.05 .2014	A comprehensive analysis of tumorigenesis pathways driving early and late onset colorectal cancer in India
Anupam Sinha	HA Nagarajaram	05.01 .2015	Computational analysis of the effects of alternative splicing on protein-protein interaction networks
Sapan Borah	Rupinder Kaur	03.02 .2015	A molecular analysis of antifungal drug susceptibility in the human opportunistic pathogen Candida glabrata

पुरस्कार एवं सम्मान Awards and Honours

AWARDS \& HONOURS

FACULTY \& STAFF	
Dr Ashwin B Dalal	Selected under Exchange of Scientists Programme between INSA and Royal Society, Edinburgh (2015) - visit to Laboratory of Dr Andrew Jackson, Medical Research Council Laboratory, University of Edinburgh, Scotland, UK for 4 weeks from 6th June to 6th July, 2015.
Dr Murali Dharan Bashyam	Awarded the National BioscienceAward for Career Development-2013 from the DBT
Dr Rupinder Kaur	Invited as Plenary Lecturer in the "6th FEBS Advanced Lecture Course on Human Fungal Pathogens" to be held at Nice, France during May 2015
Dr Sangita Mukhopadhyay	Awarded ICMR Basanti Devi Amir Chand Prize-2011
PhD STUDENTS \& PROJECT PERSONNEL	
Ms. Anusha Uttarilli	DST travel grant to attend 64th Annual Meeting of the American Society of Human Genetics (ASHG) in California, USA (October 2014)
Mr Aushaq Bashir Malla	Poster Presentation Award at the Chromosome Stability Conference-2014 held at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru (December 2014)
Mr Bhavik Sawhney	Poster Award at the 25th tRNA Conference held at Kyllini, Greece (September 2014)
Mr Kundan Kumar	Shyama Prasad Mukherjee Fellowship (SPMF) in the CSIR-UGC National Eligibility Test (NET) held in June 2014
Mr Imtiyaz Yaseen	Poster Prize from the Biochemical Journal, UK at 5th meeting of Asian Forum of Chromosome and Chromatin Biology held at JNCASR, Bangalore (January 2015)
Dr Nagender Rao R	"DST-SERB" Fast track Young Scientist Award (2015)
Ms. Narmadha Reddy	Dr KV Rao Research Award (2013-2014)
Ms. Neelam Chaudhary	Best Poster Award at International conference on genome architecture and cell fate regulation held at University of Hyderabad (December 2014)
Mr Philip Raj Abraham	(i) ICMR Travel Grant from ICMR, New Delhi and (ii) Prof GP Talwar Travel Bursary from Immunology Foundation, New Delhi to attend the 12th International Conference on Molecular Epidemiology and Evolutionary Genetics of Infectious Diseases (MEEGID XII) held at Bangkok, Thailand (2014)
Mr Rathan Singh Jadav	Poster PresentationAward at the Chromosome Stability Conference-2014 at Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru (December 2014)
Dr Ratheesh Raman	Young Scientist Award-2014 from the AP Akademi of Sciences, Hyderabad
Ms. Rikky Rai	ASM Travel Award for attending ASM Conference on Cell-Cell Communication in Bacteria at San Antonio, Texas, USA (October 2014)
Mr Vishwanath Jha	Best Poster Award at 83rd Annual Meeting of the Society of Biological Chemists of India, Bhubaneshwar (December 2014)

व्याख्यान, बैठक, कार्यशाला व अन्य महत्वपूर्ण कार्यक्रम Lectures, Meetings, Workshops and Important Events

DISTINGUISHED VISITORS AND LECTURES

Visitor	Title of Lecture	Date
Dr Kunal Rai Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX USA	Functional epigenomics of melanoma progression	11.04.2014
Dr Pramod Kaitheri Kandoth Division of Plant Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, MO, USA	Elucidating function of a SHMT in plant nematode resistance	28.04.2014
Dr Umasankar K. Perunthottathu Department of Cell Biology and Physiology University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA	Traffic block: Sort it all out in one minute	07.05.2014
Prof Paturu Kondaiah MRDG, Indian Institute of Science,Bangalore	Identification of novel gene expression profiles that predict prognosis in Indian Breast cancer patients	13.05.2014
Dr Prashanth Kumar Bajpe Department of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands	Understanding resistance to cancer drugs through functional genetics	05.06.2014
Dr Aravind Penmatsa Vollum Institute, Oregon Health and Science University, Portland, OR, USA	Structure of the dopamine transporter unravels mechanism of neurotransmitter transport inhibition	11.06.2014
Dr Souvik Bhattacharjee University of Notre Dame, Center for Rare and Neglected Diseases, Notre Dame, USA	From malaria to Irish potato famine: Reprograming the host through $\mathrm{PI}(3) \mathrm{P}$	12.06.2014
Dr Dipanjan Roy Department of Neurology, Charite, Chariteplatz 1, Berlin, Germany	Traces of learning in the spontaneous activity in the human cortex: Experimental and modeling insights	21.08.2014
Dr Sandeep M. Eswarappa Dept. of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, USA	Translation beyond the stop codon	12.09.2014

Visitor	Title of Lecture	Date
Dr Raghu Padinjat National Centre for Biological Sciences, Bangalore	Regulation of insulin signalling and cell size by a novel phosphoinositide kinase	25.09 .2014
Dr Debabrata Mandal NIPER-Hajipur, Bihar	Transfer RNA and genetic code: A modified view	29.09 .2014
Dr Gaurav Das Centre for Neural Circuits and Behaviour (CNCB), Anatomy and Genetics, Oxford University	Neural circuit basis of learning, memory and behavior: Drosophila learn opposing components of a compound food stimulus	31.10 .2014
Prof Upender Manne Comprehensive Cancer Health Disparities Research Center, University of Alabama, Birmingham, USA	Importance of population-based studies in developing cancer molecular biomarkers	11.12 .2014
Dr Prasanna K Devaraneni Department of Biochemistry and Molecular Biology, School Sciences University, Portland, OR-USA	Membrane protein biogenesis: Topogenesis, assembly and function	15.12 .2014
Dr Devanjan Sinha Indian Institute of Science, Bangalore	Mitochondrial chaperones: Bridging the gap between the organeller function and disease biology	09.02 .2015
Dr Virupakshi Soppina University of Michigan Medical School, Ann Arbor, USA	Kinesin-3 motors are marathon runners of the cellular world	12.02 .2015
Dr Parthasarathy Sampathkumar Albert Einstein College of Medicine, Bronx, NY, USA	TbPEX5, MtbThyX, and a peek into the inner ring of nuclear pore complex: A tale of Nup192	16.02 .2015
Dr Amit Ghosh Lawrence Berkeley National Laboratory, California, USA	Quantitative systems and synthetic biology for microbial engineering	20.02 .2015
Prof Stephane Genin INRA, France	Ralstonia solanacearum pathogenesis and adaptation to the plant environment	04.03 .2015
Prof Philippe Bouloc Laboratoire Signalisation et Réseaux de Régulations Bactériens, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Orsay Cedex, France	Trapping sRNA targets in Staphylococcus aureus to decipher sRNA-dependent networks	24.03 .2015

IMPORTANT EVENTS

Event	Date
Anti -Terrorism Day	21.05 .2014
Press Meet on "DNA test for victims of Uttarakhand Tragedy"	23.06 .2014
Summer Trainees' Colloquium	25.06 .2014
Mock fire drill	$26.06 .2014-27.06 .2014$
16th meeting of CDFD Research Area Panels-Scientific Advisory Committee (RAP-SAC)	04.07 .2014 - 05.07 .2014
Video conference with the Hon'ble President using NKN	04.08 .2014 or 05.08.2014
Independence Day Celebrations	15.08 .2014
Sadbhavana Diwas Pledge	20.08 .2014
Hindi Pakhwada Celebrations	01.09 .2014 - 15.09.2014
Meeting of the Institutional Biosafety Committee (IBSC) of CDFD	10.09 .2014
Hindi Day Celebrations	17.09 .2014
Swachh Shapath (Cleanliness Pledge)	02.10 .2014
Installation and training program on CODIS Software (Visit of Hon'ble Consul General of USA Mr Michael Mullins for Valedictory function on 10.10.2014)	07.10 .2014 - 11.10.2014
30th Meeting of the CDFD Finance Committee	28.01 .2015
23rd Meeting of the CDFD Building Committee	13.10 .2014
Vigilance Awareness Week	13.10 .2014
Visit of Dr Tomohiro Shimada Tokyo Institute of Technology, Japan under the DST-JSPS collaborative research project	27.10 .2014
Indo-US symposium on Genomic insights into Human morphogenesis 1st Annual meeting of Society for Indian Academy of Medical Genetics-2014	07.11 .2014 - 09.11.2014

Observance of silence on 'Martyrs day'	30.01 .2015
Productivity Week Celebrations-2015	$12.02 .2015-18.02 .2015$
CDFD Institutional Biosafety Committee meeting	24.02 .2015
Unicode Hindi Software Workshop	20.03 .2015
Visit of Prof Sylvie Rimsky Director of Research Ecole Nationale Superieure (ENS), Cachan, France under Indo-France collaborative research project	$23.03 .2015-24.03 .2015$

सी डी एफ डी कर्मचारियों की विदेशों में प्रतिनियुक्ति
 Deputations Abroad of CDFD Personnel

DEPUTATIONS ABROAD - FACULTY \& STAFF

Faculty/Staff	Period	Country of Visit and Purpose
J Gowrishankar	01.04.2014 to 04.04.2014 01.08.2014 to 09.08.2014 24.02.2015 to 10.03.2015	France \& Belgium: (i) to meet the groups of his research collaborators Drs. Sylvie Rimsky and Philippe Bouloc in Paris, France for scientific discussions (ii) to participate and to speak in the workshop titled "Implementing a global research agenda for AMR" and also to attend a joint workshop with the European Commission on "Antibiotics and their alternatives" being organized by the Joint Programming Initiative on Antimicrobial Resistance (JPIAMR) in Brussels, Belgium. USA: (i) to visit the laboratories of Prof. Stanley N Cohen, Stanford University and Prof. Carol A Gross, University of California, San Francisco (ii) to attend the "2014 Molecular Genetics of Bacteria and Phages Meeting" at University of Wisconsin, Madison, Wisconsin, USA Japan: (i) to visit the laboratory of Dr. Tomohiro Shimada (Japanese Investigator), Tokyo Institute of Technology, in connection with implementation of the joint India-Japan research project with Dr. Tomohiro titled "Analysis of co-regulation between DNA replication and amino acid homeostasis by transcription factor IciA/ ArgP in Escherichia coli" (ii) to visit Prof. Nobuo Shimamoto at Kyoto Sangyo University, Kyoto
Ranjan Sen	31.08.2014 to 06.09.2014	UK: To attend the Total Transcription ConferenceatWellcome Trust Conference Centre, Hinxton, Cambrideshire, UK.
Murali Dharan Bashyam	01.04.2014 to 10.04.2015	USA: (i) To visit (a) UCLA Jonsson Comprehensive Cancer Centre at Los Angeles, CA, USA (b) Moore's Cancer Centre, UCSD, San Diego, CA, USA (c) Beckman Facility at San Diego and (ii) To attend the "American Association for Cancer Research (AACR) Annual Meeting" during 5-9 April, 2014 at San Diego, CA, USA (iii) To visit the laboratory of Dr. Ramana Davuluri at The Robert H. Lurie Comprehensive Cancer Centre of Northwestern University, Chicago and Prof. Ananda Chakrabarty at University of Illinois, Chicago to perform next generation sequencing data analysis and to discuss collaboration on cancer genomics.

Rupinder Kaur	24.09.2014 to 02.10.2014	Germany: To present her work in the EMBL Conference on "Frontiers in Fungal Systems Biology" scheduled to be held at Heidelberg, Germany.
Rashna Bhandari	$09.10 .2014 \text { to } 12.10 .2014$	France: To attend and submit an abstract at the 39th European Symposium on Hormones and Cell Regulation which will focus on "Inositol Lipid Signaling: from molecular mechanisms to human pathologies" at Mont Ste Odile, France.
	13.10.2014 to 18.10.2014	Germany: To visit Laboratory of Prof. Georg Mayr, Institute of Biochemistry and Signal Transduction, University Medical Center, Hamburg - Eppendorf, Hamburg, Germany.
N Madhusudan Reddy	$01.06 .2014 \text { to } 12.07 .2014$	Germany: To conduct research as Guest Scientist in the laboratory of Prof. Mark Stoneking, Professor for Biological Anthropology, Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany against his fourth visit to Prof. Mark Stoneking's Laboratory as a part of the "Max Planck Partner Group Programme" (MPPGP) between CDFD and MPI-EVA awarded by the Max Planck Society, Germany.
	15.08.2014 to 15.12.2014	USA: to visit the laboratory of Prof. Arthur Eisenberg, Professor and Chairman, Department of Molecular and Medical Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA for conducting research work in the area of forensic DNA profiling as a part of Indo-US Research Fellowship.
Shweta Tyagi	05.12.2014 to 13.12.2014	USA: (i) To attend "The American Society of Cell Biology (ASCB / IFCB) meeting at Philadelphia, Pennsylvania, USA (ii) To meet Dr. lain Cheeseman in Massachusetts Institute of Technology, Boston and Dr. Michael Cosgrove in Upstate Medical University, Syracuse, New York to discuss results and explore future collaborations.
Subhadeep Chatterjee	06.06.2014 to 15.06.2014	China: (i) To attend the 13th International Conference on Plant Pathogenic Bacteria (ICPPB) and give a talk on the work on Xanthomonas - plant interaction at Shanghai Jiao Tong University, Shanghai, China.

\(\left.$$
\begin{array}{|l|l|l|}\hline & & \begin{array}{l}\text { (ii) To visit Dr. Goungyou Chen's laboratory } \\
\text { and to visit department of Plant Pathology } \\
\text { for exploring future collaboration and } \\
\text { scientific discussion in Shanghai Jiao } \\
\text { Tong University, Shanghai. }\end{array} \\
\hline \text { Sardesai Abhijit Ajit } & 30.01 .2015 \text { to 11.02.2015 } & \begin{array}{l}\text { Japan: To visit the Tokyo Institute of } \\
\text { Technology (Titech), Tokyo, Yokohama, } \\
\text { Japan under the Indo-Japan Collaborative } \\
\text { Research Project between the Laboratory } \\
\text { of Bacterial Genetics, CDFD and the } \\
\text { Laboratory of Dr. Tomohiro Shimada. }\end{array} \\
\hline \text { R Harinarayanan } & 04.08 .2014 \text { to 11.08.2014 } & \begin{array}{l}\text { USA: To attend a conference titled } \\
\text { "Molecular Genetics of Bacteria and } \\
\text { Phages" at Madison, Wisconsin, USA } \\
\text { and to visit the laboratory of Dr. Michael } \\
\text { Cashel for scientific interaction at NIH, } \\
\text { Bethesda, USA. }\end{array} \\
\hline \text { Arun Kumar KP } & 01.04 .2014 \text { to 11.04.2014 } & \begin{array}{l}\text { Italy: (i) To visit the Laboratory of Prof. } \\
\text { Giuseppe Saccone at the University } \\
\text { of Naples, Italy to discuss on the } \\
\text { collaborative research activities on insect } \\
\text { sex determination. }\end{array}
$$

\hline (ii) To attend the Final Research\end{array}\right\}\)| Coordination Meeting (FRCM) on |
| :--- |
| "Development and evaluation of |
| improved strains of insect pests for |
| SIT" at the International Atomic Energy |
| Agency (IAEA), Capri, Italy. |

DEPUTATIONS ABROAD - STUDENTS

Name of the Scholar	Period	Country of Visit and Purpose
Adduri Sita Rama Raju	05.04.2014 to 09.04.2014	USA: To attend American Association for Cancer Research (AACR) Annual Meeting-2014
Saurabh Mishra	26.04.2014 to 30.04.2014	USA: To attend 2014 ASBMB Annual Meeting on Experimental Biology (EB 2014)
Atul Udgata	01.06.2014 to 06.06.2014	Greece: To attend 11th International Conference on Innate Immunity
Garima Sharma	08.06.2014 to 13.06.2014	USA: To attend Gordon Research conference titled "Chromatin structure and function"
Mugdha Singh	01.07.2014 to 10.08.2014	Germany: Visiting Scholar / Guest Researcher as part of the Max Planck Partner Group Programme
Rachita HR	12.07.2014 to 15.07.2014	USA: To attend International Conference ISMB-2014
Arpita Goswami	26.07.2014 to 01.08.2014	USA: To attend Gordon Research Conference and Gordon Research Seminar on "Diffraction methods in Structural Biology (GRC and GRS 2014)"
Aanisa Nazir	05.08.2014 to 09.08.2014	USA: To attend 2014 Molecular Genetics of Bacteria and Phages Meeting
Amit Pathania	05.08.2014 to 09.08.2014	USA: To attend 2014 Molecular Genetics of Bacteria and Phages Meeting
Amitava Basu	09.09.2014 to 13.09.2014	USA: To attend Epigenetics and chromatin conference
Bhavik Sawhney	21.09.2014 to 25.09.2014	Greece: To attend 25th tRNA conference
Anusha Uttarilli	18.10.2014 to 22.10.2014	USA: To attend 64th Annual meeting of the American Society of Human Genetics (ASHG)
Rikky Rai	18.10.2014 to 21.10.2014	USA:Toattend 5thASM Conference on Cell-Cell Communication in Bacteria
Neelam Chaudhary	11.01.2015 to 16.01.2015	USA: To attend Keystone meeting on "The biological code of cell singalling: a tribute to Tony Pawson(F1)"
Jadav Rathan Singh	07.02.2015 to 13.02.2015	USA: To attend Gordon Research Seminar and Gordon Research Conference on "Mammalian DNA Repair: Controlling Traffic on the Streets and at the Crossroads of DNA Repair Pathways"
Tarique Anwar	08.03.2015 to 12.03.2015	USA: To attend Keystone Symposia Conference on "Biology of Sirtuins (C3)"

सीडीएफडी के संकाय एवं अधिकारी Faculty and Officers of CDFD

SCIENTIFIC GROUP LEADERS (FACULTY)

Dr J Gowrishankar
Dr DP Kasbekar
Dr Ranjan Sen
Dr Sangita Mukhopadhyay
Dr MD Bashyam
Dr Sunil Kumar Manna
Dr Nagarajaram HA
Dr Akash Ranjan
Dr Rupinder Kaur
Dr Sanjeev Khosla
Dr Ashwin B Dalal
Dr Rashna Bhandari
Dr Devyani Haldar
Dr N Madhusudan Reddy
Dr Shweta Tyagi
Dr MV Subba Reddy
Dr Subhadeep Chatterjee
Dr Sardesai Abhijit Ajit
Dr Rohit Joshi
Dr R Harinarayanan
Dr Arun Kumar KP
ADJUNCT FACULTY
Dr EA Siddiq
Prof T Ramasarma
Prof Anuradha Lohia
Dr Renu Wadhwa
Dr Prajnya Ranganath
Dr Shagun Aggarwal
OTHER GROUP LEADERS
Mr Raghavendrachar J
Ms Varsha
Ms M Kavita Rao

SENIOR ADMINISTRATIVE STAFF

Mr. J Sanjeev Rao
Mr S Ayub Basha
Mr B Jagannathacharyulu

केन्द्र की समितियाँ

(31.03.2015 तक)

Committees of the Centre
(As on 31.03.2015)

MEMBERS OF CDFD SOCIETY

Dr Harsh Vardhan

Hon'ble Minister for S\&T and Earth Sciences

Prof K VijayRaghavan

Member (Ex-officio)
Secretary, DBT, New Delhi
Dr PS Ahuja
Member (Ex-officio)
Director General, CSIR, New Delhi
Dr Manoj S Rohilla
Member (Ex-officio)
Scientist 'C', DBT
(Nominee of Dr (Mrs) Suman Govil, Adviser,
DBT, New Delhi)
Ms Kusum Lata Sharma - Member (Ex-officio)
Deputy Secretary, DBT
(Nominee of JS \& FA, DBT, New Delhi
Joint Secretary (PM)
Member (Ex-officio)
Ministry of Home Affairs, New Delhi
Shri Devkant - Member (Ex-officio)
Deputy Legal Adviser
(Nominee of Joint Secretary \& Legal Adviser, Ministry of Law \& Justice, New Delhi)

Dr JR Gaur

PSO, BPR\&D, New Delhi
Member (Ex-officio)
(Nominee of Director General, BPR\&D, New Delhi)

Prof P Balaram - Member (Ex-officio)
IISc, Bangalore
Chairman of Scientific Advisory Committee, CDFD

Prof VS Chauhan

Member
Visiting Scientist, ICGEB, New Delhi
Prof Dipankar Chatterji - Member
IISc, Bangalore
$\begin{array}{lll}\text { Dr J Gowrishankar } & \text { - Member Secretary } \\ \text { Director, CDFD, Hyderabad }\end{array}$

MEMBERS OF CDFD GOVERNING COUNCIL

Prof K VijayRaghavan

Secretary, DBT, New Delhi
Dr PS Ahuja
Director General, CSIR, New Delhi

Dr Manoj S Rohilla

Scientist ' ${ }^{\text {' }}$ ', DBT
(Nominee of Dr (Mrs) Suman Govil, Adviser, DBT, New Delhi)

Ms Kusum Lata Sharma
Deputy Secretary, DBT
(Nominee of JS \& FA, DBT, New Delhi
Joint Secretary (PM) - Member (Ex-officio)
Ministry of Home Affairs, New Delh

Shri Devkant

Deputy Legal Adviser
(Nominee of Joint Secretary \& Legal Adviser, Ministry of Law \& Justice, New Delhi)

Dr JR Gaur

PSO, BPR\&D, New Delhi
(Nominee of Director General, BPR\&D, New Delhi)

Prof P Balaram

IISc, Bangalore
Chairman of Scientific Advisory Committee, CDFD

Prof VS Chauhan

- Member

Visiting Scientist, ICGEB, New Delhi
Prof Dipankar Chatterji
IISc, Bangalore
Dr J Gowrishankar
Director, CDFD, Hyderabad

Chairperson

Member (Ex-officio)

Member (Ex-officio)

- Member (Ex-officio)
- Member (Ex-officio)

Director, CDFD, Hyderabad

MEMBERS OF CDFD RESEARCH AREA PANELS SCIENTIFIC ADVISORY COMMITTEE (RAP-SAC)

Prof P Balaram

Director, IISc, Bangalore
Dr Vijay Kumar
ICMR, New Delhi
(ICMR representative)
Shri V Venugopal
Director, CFSL, Hyderabad (MHA representative)
Dr (Mrs) Suman Govil
DBT representative
Dr KV Prabhu
IARI, New Delhi
(ICAR representative)
Dr Ghanshyam Swarup
CCMB, Hyderabad
(CCMB representative)
Dr Veena K Parnaik
CCMB, Hyderabad
Dr SK Apte
BARC, Mumbai
Dr Usha Vijayraghavan
IISc, Bangalore
Prof Umesh Varshney
IISc, Bangalore
Dr Sandhya S Visweswaraiah
IISc, Bangalore
Dr Jaya Sivaswami Tyagi
AllMS, New Delhi
Prof MK Mathew
NCBS, Bangalore
Prof Sanjeev Galande
IISER, Pune
Dr Joyoti Basu
Bose Institute, Kolkata
Dr Debasisa Mohanty
NII, New Delhi
Dr Shubha R Phadke
SGPGI, Lucknow
Dr Ramakrishna Ramaswamy
UoH, Hyderabad
Dr J Gowrishankar
Director, CDFD, Hyderabad

Member

- Member

Chairman
Member

- Member
- Member Secretary

MEMBERS OF CDFD ACADEMIC COMMITTEE

Prof AS Raghavendra

Dean, School of Life Sciences
University of Hyderabad, Hyderabad

Prof Anil K Tyagi

University of Delhi, South Campus, New Delhi

Dr K Satyamoorthy

Director, Manipal Life Sciences Centre
Manipal University, Manipal
Dr DP Kasbekar
Haldane Chair, CDFD, Hyderabad

Dr Ranjan Sen

Staff Scientist, CDFD, Hyderabad
Dr Sanjeev Khosla
Staff Scientist \& Coordinator (Academics)
CDFD, Hyderabad

Chairman

- Member
- Member
- Member
- Member
- Member Convenor

MEMBERS OF THE INSTITUTIONAL BIO-SAFETY COMMITTEE

Dr DP Kasbekar
Haldane Chair, CDFD, Hyderabad
(Nominee of Director, CDFD)
Dr Rupinder Kaur
Staff Scientist, CDFD, Hyderabad
Dr Ashwin B Dalal
Staff Scientist, CDFD, Hyderabad
Dr Murali Dharan Bashyam
Staff Scientist, CDFD, Hyderabad
Dr Subhadeep Chatterjee
Staff Scientist, CDFD, Hyderabad

Dr Ashok Khar

Former Director, CMBRC, Appollo Hospitals
Educational and Research Foundation
Dr Manjula Reddy
Senior Principal Scientist, CCMB, Hyderabad

- Chairman
- Member Secretary
- Biosafety Officer
- CDFD Expert
- CDFD Expert
- Outside Expert
- DBT Nominee

MEMBERS OF THE INSTITUTIONAL BIOETHICS COMMITTEE

Prof G Manohar Rao

Former Principal, PG College of Law,
Osmania University, Hyderabad

Prof Sheela Prasad

Associate Professor, Centre for Regional Studies, School of Social Sciences, University of Hyderabad

Dr Mahtab S Bamji
Emeritus Scientist, Dangoria Charitable Trust, Hyderabad

Mrs Amita Kasbekar

VP, Deloitte Consulting India Pvt. Ltd.
RMZ, Hitech City,
Hyderabad
Dr Murali Bashyam
Staff Scientist, CDFD, Hyderabad

Dr Ashwin B Dalal

Staff Scientist, CDFD, Hyderabad

- Chairperson
- Member
- Member
- Member
- Member
- Member Secretary

MEMBERS OF CDFD BUILDING COMMITTEE

Prof VS Chauhan
Visiting Scientist, ICGEB, New Delhi
Dr J Gowrishankar
Director, CDFD, Hyderabad
Joint Secretary
DBT, New Delhi
Shri VH Rao
Hyderabad
Shri J Sanjeev Rao
Head-Administration, CDFD, Hyderabad
Shri BJ Acharyulu
Head-F\&A, CDFD, Hyderabad

Shri S Ayub Basha

Staff Scientist-V (Engg), CDFD, Hyderabad

- Chairman
- Member
- Member
- Member
- Member
- Member
- Member-Convenor

MEMBERS OF CDFD MANAGEMENT COMMITTEE

Dr J Gowrishankar
Director, CDFD, Hyderabad
Dr DP Kasbekar
Haldane Chair, CDFD, Hyderabad
Dr Rupinder Kaur
Staff Scientist, CDFD, Hyderabad
Dr Subhadeep Chatterjee
Staff Scientist, CDFD, Hyderabad
Shri BJ Acharyulu
Head-F\&A, CDFD, Hyderabad
Shri J Sanjeev Rao
Head-Administration, CDFD, Hyderabad

- Chairman
- Member
- \quad Member (for a 2 year period)
- \quad Member (for a 2 year period)
- Member
- Member-Convenor

MEMBERS OF CDFD FINANCE COMMITTEE

Prof Vs Chauhan	-	Chairman
Visiting Scientist, ICGEB, New Delhi		
Dr Dipankar Chatterji IISc, Bangalore	-	Member
Ms Anuradha Mitra JS\&FA, DBT, New Delhi	-	Member
Dr Suman Govil Advisor, DBT, New Delhi	-	Member
Dr J Gowrishankar Director, CDFD, Hyderabad	-	Member
Shri BJ Acharyulu Head-F\&A, CDFD, Hyderabad	-	Member Convenor

MEMBERS OF SEXUAL HARASSMENT COMPLAINTS COMMITTEE

Dr Sangita Mukhopadhyay

Staff Scientist, CDFD, Hyderabad

Mr J Sanjeev Rao

Head - Administration, CDFD, Hyderabad
Ms V Naga Sailaja
Technical Officer, CDFD, Hyderabad
Ms MV Sukanya
Technical Officer, CDFD, Hyderabad
Mr MSA Zaman Khan
Section Officer, CDFD, Hyderabad
Ms P Jamuna
Gramya Resource Centre for Women (representing an NGO)

- Chairperson
- Member
- Member
- Member
- Member
- Member

सूचना अधिकार अधिनियम, 2005 का परिपालन Implementation of RTI Act, 2005

IMPLEMENTATION OF RIGHT TO INFORMATION (RTI) ACT, 2005
Appellate Authority : J Sanjeev Rao
Details about the RTI applications and appeals received in CDFD

		0	0
	$\stackrel{\text { ¢0 }}{\stackrel{\text { ® }}{ }}$	へ	\sim
		0	$\begin{array}{\|c} \frac{0}{0} \\ \frac{0}{0} \\ \frac{0}{\bar{O}} \\ \frac{0}{0} \\ \stackrel{\rightharpoonup}{\mathrm{O}} \\ \hline \end{array}$
		m	-
		ন	\checkmark
	$\stackrel{\text { ¢0 }}{\circ}$	N	\sim
		∞	(
		$\stackrel{\sim}{\square}$	\sim
		+	0
		-	告

बजट एवं वित्त Budget and Finance

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS HYDERABAD

Budget \& Finance 2014-15

Sources of Funds

The Financial resources of the Centre are the Core Plan Grant-in Aid provided by the Department of Biotechnology, Government of India as against Annual Budgetary projections made by the Institute. Other resources are in the form of Research Grants provided by various National and International agencies and also from Services rendered by CDFD. The components of the core grants are Plan (Recurring) essentially for meeting expenditures on salaries, Operating expenses etc., and Plan (Non-Recurring) for meeting expenses on account of Equipments, Infrastructure and Furnishing etc.,

Receipts during the year 2014-15

Particulars	Amount in Lakhs	Percentage - \%
Plan Grant in Aid	4100.00	72.46
Sponsored Projects	1080.91	19.10
CDFD Services	164.82	2.91
Misc Receipts	312.67	5.53
Total	$\mathbf{5 6 5 8 . 4 0}$	$\mathbf{1 0 0 . 0 0}$

I. Application of Funds during 2014-15 (Plan Grant in Aid)

S No	Particulars	Amount in Lakhs	Percentage- \%
$\mathbf{1}$	Recurring		28.72
	GIA- Salaries	1239.38	37.18
	GIA-General	1604.49	65.90
	Total	2843.87	
2	Non-Recurring		34.10
	GIA- Capital	1471.79	34.10
	Total	1471.79	100.00

II. Application of Funds during 2014-15 (Extra Mural Projects)

S No	Particulars	Amount in Lakhs	Percentage- \%
$\mathbf{1}$	Recurring		
	Salaries	286.43	29.82
	General	579.09	60.29
	Total	865.52	90.11
2	Non-Recurring		9.89
	GIA- Capital	94.97	9.89
	Total	94.97	100.00

लेखा परिक्षक की रिपोर्ट Auditor's Report

K R Srinivasan \& Co

Chartered Accountants

AUDITOR'S REPORT

Date: 15-05-2015

The Director,
Centre for DNA Fingerprinting and Diagnostics,
Nampally,
Hyderabad - 500001

We have audited the attached Balance Sheet of CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, Hyderabad, as at 31st March 2015 and also the Income \& Expenditure Account for the year ended on that date annexed there to. These Financial Statements are the responsibility of the organization management. Our responsibility is to express an opinion on these Financial Statements based on our audit.

We report that:

1. We have obtained all the information and explanations, which to the best of our knowledge and belief, were necessary for the purpose of our audit.
2. In our opinion, the organization has kept proper books of account as required by law so far, as appears from our examination of these books.
3. The Balance Sheet and Income \& Expenditure account dealt with by this report is in agreement with the books of account.
4. (a) The centre has maintained accounts on accrual basis.
(b) The Centre receives extra mural grants from various National \& International agencies for specific research activities. The Centre has a policy of allocating the overheads and transfer of expenditure of CDFD to different projects at the end of the financial year after taking into account the amount of maximum permissible limit of overheads and also based on the approved budget estimates and expenditure of the respective projects during the financial year.
5. In our opinion and to the best of our information and according to the explanations given to us, the said Balance Sheet and the Income \& Expenditure account read together with the notes thereon gives the required information in the manner so required and gives a true and fair view.
a) In so far it relates to the Balance Sheet as at 31st March 2015 and
b) In so far as it relates to the Income \& Expenditure account excess of expenditure over income for the year ended on 31st March 2015.
for K R Srinivasan \& Co
Chartered Accountants
[K R SRINIVASAN]
Place: Hyderabad
Date: 15/05/2015

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS,HYDERABAD BALANCE SHEET AS ON 31st MARCH 2015 \qquad (Amount - Rs.)				
		Schedule	Current Year	Previous Year
CORPUS/CAPITAL FUND AND LIABILITIES				
Corpus / Capital Fund		1	1212702539	1169815289
Reserves and Surplus		2	0	0
Earmarked / Endowment funds		3	0	0
Secured Loans \& Borrowings		4	0	0
Unsecured Loans \& Borrowings		5	0	0
Deffered Credit Liabilities		6	0	0
Current Liabilities and Provisions		7	70028009	70814398
TOTAL			1282730548	1240629687
ASSETS				
Fixed Assets		8	1090185109	966768793
Investments- From Earmarked / Endowment Funds		9	35098273	19398273
Investments - Others		10	33593376	23131298
Current Assets, Loans, Advances etc.		11	123853790	231331323
Miscellaneous Expenditure			0	
TOTAL			1282730548	1240629687
Significant Accounting Policies		24		
Contingent Liabilities and Notes on Accounts		25		
DIRECTOR	For K R SRINIVASAN \& CO		HEAD - FIN	\& ACCOUNTS
CDFD	CHARTERED ACCOUNTAN (K R SRINIVASAN)			CDFD

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS,HYDERABAD INCOME \& EXPENDITURE FOR THE YEAR ENDED 31st MARCH 2015 (Amount - Rs.)					
INCOME	Schedule		Current Year		Previous Year
Income from Sales/Services	12		16481871		6408041
Grants/Subsides	13		260000000		250932400
Fees/Subscriptions	14		0		0
Income from Investments	15		27138910		23220086
Income from Royality, Publications etc.	16		0		0
Interest Earned	17		2104450		43238
Other Income	18		3609182		3620866
Increase/(decrease) in stock of Finished goods and works-inprogress	19		0		0
TOTAL (A)			309334413		284224631
EXPENDITURE					
Establishment Expenses	20		128443061		106712459
Administrative Expenses	21		207784973		177267101
Expenditure on Grants, Subsides etc.	22		0		0
Interest	23		0		0
Depreciation (Net Total at the year-end -corresponding to Schedule 8)		81320619		84513447	
Less:Transferred to Grants-in-Aid		81320619	0	84513447	
Provision For Salaries			8395162		3392051
TOTAL (B)			344623196		287371611
Balance being excess of Income over Expenditure (A-B)			-35288783		-3146980
DIRECTOR CDFD	K R SRINIV ARTERED A R SRINIVAS	ASAN \& CO CCOUNTANTS AN)		HEAD - FIN	\& ACCOUNTS CDFD

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS,HYDERABAD					
RECEIPTS	Current Year	Previous Year	PAYMENTS	Current Year	Previous Year
1.Opening Balances			1. Expenses		
a) Cash in hand			a) Establishment Expenses (corresponding to Schedule 20)	128443061.00	106712459.00
b) Bank Balances			b) Administrative Expenses (corresponding to Schedule 21)	207784973.05	177267101.00
i) In current accounts	26417751.96	12223805.10	c) Schedule 22	0.00	0.00
ii) In deposit accounts					
iii) Savings accounts	4383078.10	20909457.77			
2. Grants Received			2. Payments made against funds for various projects		
a) From Government of India	410000000.00	340932400.00	(Name of the fund or project should be shown along with		
b) From State government			the particulars of payments made for each project)		
c) From other sources (details)			Projects (Annexure F)	96048982.00	106664828.00
(Grants for capital \& revenue			CSIR(Stipend)	10088151.00	10743372.00
exp. To be shown seperately)			DBT(Stipend)	5571185.00	4534065.00
Research Associates - CSIR(Stipend)	11093876.00	5567737.00	DST(Stipend)	1340375.00	739200.00
Research Associates - DBT(Stipend)	5623475.00	5292736.00	ICMR(Stipend)	2785432.00	2901926.00
Research Associates - DST(Stipend)	85239.00	250400.00	IISC(Stipend)	813334.00	1578752.00
Research Associates - ICMR(Stipend)	1589055.00	2830106.00	UGC(Stipend)	8242741.00	5150772.00
Research Associates - IISC(Stipend)	1029961.00	424400.00			
Research Associates - UGC(Stipend)	16736506.00	0.00			
			3. Investments and deposits made		
Projects (Annexure - C)	108091285.00	74360025.00	a) Out of Earmarked/Endowement funds	189000000.00	203000000.00
			b) Out of Own Funds (Investments-Others)	0.00	
DIRECTOR		For K R SRINIVASAN \& CO CHARTERED ACCOUNTANTS (K R SRINIVASAN)		- FINANCE 8	CCOUNTS
CDFD					CDFD

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS,HYDERABAD RECEIPTS AND PAYMENTS ACCOUNT FOR THE YEAR ENDED 31st MARCH 2013 (Amount - Rs.)					
RECEIPTS	Current Year	Previous Year	PAYMENTS	Current Year	Previous Year
3. Income on Investments from					
a) Earmarked/Endow. Funds	9126414.00	23220086.49	4. Expenditure on Fixed Assets \& Capital Work-in-Progress		
b) Own Funds (Oth. Investment)			a) Purchases of Fixed Assets:		
Investments EnCashed	162000000.00	246000000.00	Books \& Journals	895458.00	562565.00
			Equipment-Lab/Office/Furniture	74499419.00	33772456.00
			b) Expenditure on Capital Work-in-Progress:	119845405.00	59875026.00
4. Interest Received					
a) On Bank deposits	0.00	0.00			
b) Loans, Advances etc			5. Refund of surplus money/Loans		
Interest on LC	2104449.40	43238.00	a) To the Government of India	0.00	
Interest on Computer Advance, Conveyance Advance and HBA	17526.00	12488.00	b) To the State Government	0.00	
			c) To other providers of funds	0.00	
5. Other Income(Specify)					
a) Analysis Charges	16481871.00	6408041.00	6. Finance Charges (Interest)	0.00	
6. Any Other Receipts(Give Details)			7. Other Payments (Specify)		
I-Remittances (Annexure-A)	23453753.00	20611562.00	Advances (Annexure-D)	172463825.00	55068123.00
			I-Remittances (Annexure-E)	23186242.00	19987907.00
CPF-SUB,Arrears and adv.Refund	10645544.00	12641274.70	CPF A/c	18257438.00	8630042.00
Sundry Receipts	3254256.00	3150268.00	New Pension Scheme	3136300.00	2935894.00
Application Fee	235800.00	384730.00			
Provident Fund Salwage	0.00	0.00	8. Closing Balances		
Free Gifts - Donations	0.00	0.00	a) Cash in hand		
Sale OF Tender Forms	47000.00	19500.00	b) Bank Balances		
DIRECTOR CDFD		For K R SRINIVASAN \& CO CHARTERED ACCOUNTANTS (K R SRINIVASAN)		- FINANCE \&	ACCOUNTS
			CDFD		

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS,HYDERABAD					
RECEIPTS	Current Year	Previous Year	PAYMENTS	Current Year	Previous Year
Leave Salary-Pension Contribution	0.00	0.00	i) In current accounts	13313616.81	26417751.96
License Fee	54600.00	53880.00	ii) In deposit accounts		
Welfare Fund	0.00	0.00	iii) Savings accounts	9433617.60	4383078.10
NPS	3040743.00	2935894.00			
Advance/Refunds/Recovery/Adj(Annexure-B)	269637372.00	52653289.00			
TOTAL	1085149555.46	830925318.06	TOTAL	1085149555.46	830925318.06
DIRECTOR		For K R SRIN	N \& CO	HEAD - FINANCE \&	ACCOUNTS
CDFD		CHARTERED (K R SRINIVA	UNTANTS		CDFD

	CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS BALANCE SHEET AS ON 31st MARCH 2015				
			Current Year		Previous Year
	SCHEDULE 1 -CORPUS/CAPITAL FUND :				
	Balance as at the begining of the year		1169815289.00		1142536939.00
	Add : Contribution towards Corpus/Capital Fund				
	CDFD Core - Plan (Non-Recurring)	150000000.00		90000000.00	
	Capitalised portion of Capital Expenditure of projects	9496652.00	159496652.00	24938777.00	114938777.00
	Less : Depreciation For the Year 2014-2015		81320619.00		84513447.00
	Less : Excess of Expenditure over Income		35288783.00		3146980.00
	BALANCE AS AT THE YEAR - END		1212702539.00		1169815289.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015				
		Current Year		Previous Year
SCHEDULE 3 -EARMARKED/ENDOWMENT FUNDS : (Refer Annexures) (a) Opening balance of the Funds (b) Additions to the Funds: i. Donations/grants ii. Income from investments made on account of funds iii. Other additions	108091285.00 0.00 0.00	$\begin{aligned} & -25773781.00 \\ & 108091285.00 \end{aligned}$	$\begin{array}{r} 74360025.00 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{r} 6531021.00 \\ 74360025.00 \end{array}$
TOTAL (a+b)		82317504.00		80891046.00
(c) Utilisation/Expenditure towards objective of funds (i) Capital Expenditure (Refer Annexures I \& II) - Fixed Assets - Others - Total (ii) Revenue Expenditure (Refer Annexures I \& II) - Salaries, Wages and allowances etc. - Rent - Other Expenses Total	9200996.00 295656.00 28642978.00 0.00 57909352.00	9496652.00 86552330.00	24642024.00 296753.00 31884970.00 0.00 49841081.00	$\begin{aligned} & 24938777.00 \\ & 81726051.00 \end{aligned}$
TOTAL (c)		96048982.00		106664828.00
NET BALANCE AS AT THE YEAR-END [(a + b)-c]		-13731478.00		-25773782.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015		
	Current Year	Previous Year
SCHEDULE 6 - DEFFERED CREDIT LIABILITIES : a) Acceptances secured by hypothecation of capital equipment and other assets b) Others	0 0	0 0
TOTAL	0	0
Note: Amount due within one year		

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015				
	Current Year		Previous Year	
SCHEDULE 7 - CURRENT LIABILITIES AND PROVISIONS :				
Scientific Workshops - Symposiums - Seminars [Advance]	0.00		25000.00	
Security Deposit	1691275.00		1803775.00	
Service Tax	247331.00		0.00	
TA Abroad [Advance]	65249.00		0.00	
TDS	800515.00		604383.00	
Works Tax	253349.00		239439.00	
Workshop \& Conference	0.00	61632847.00	0.00	67422348.00
TOTAL (A)		61632847.00		67422348.00
B.PROVISIONS				
1. For Taxation				
2. Gratuity				
3. Superannuation/Pension				
4. Accumulated Leave Encashment				
5. Trade Warranties/Claims				
6. Others (Specify)	8395162.00	8395162.00		0
TOTAL (B)		8395162.00		0
TOTAL (A+B)		70028009.00		67422348.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015 (Amount - Rs.)		
SCHEDULE 9 - INVESTMENTS FROM EARMARKED/ENDOWMENT FUNDS :	Current Year	Previous Year
1. In Government Securities	0.00	0.00
2. Other approved securities	0.00	0.00
3. Shares	0.00	0.00
4. Debentures and Bonds	0.00	0.00
5. Subsidiaries and Joint Ventures	0.00	0.00
6. Others (to be specified) - STDRs (Annexure-J)	35098273.00	19398273.00
TOTAL	$\mathbf{3 5 0 9 8 2 7 3 . 0 0}$	$\mathbf{1 9 3 9 8 2 7 3 . 0 0}$

CENTRE FOR DNA FINGER SCHEDULES FORMING PART OF BAL		(Amount - Rs.)
	Current Year	Previous Year
SCHEDULE 10-INVESTMENTS - OTHERS : (Annexure-K)		
1. In Government Securities	0.00	0.00
2. Other approved securities	0.00	0.00
3. Shares	0.00	0.00
4. Debentures and Bonds : UTI Bonds		
5. Subsidiaries and Joint Ventures	0.00	0.00
6. Others (to be specified) - STDRs, (CPF),CDFD CP FUND A/C	33593376.00	23131298.00
TOTAL	33593376.00	23131298.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015 (Amount - Rs.)		
	Current Year	Previous Year
SCHEDULE 13-GRANTS/SUBSIDES : (Irrevocable Grants \& Subsides Received)		
1) Central Government (DBT Plan Grant-in-Aid)	260000000.00	250932400.00
2) State Government(s)	0.00	0.00
3) Government Agencies	0.00	0.00
4) Institutions/Welfare Bodies	0.00	0.00
5) International Organisations	0.00	0.00
6) Others (Specify)	0.00	0.00
TOTAL	260000000.00	250932400.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015		
	(Amount - Rs.)	
SCHEDULE 14 - FEES/SUBSCRIPTIONS :	Current Year	Previous Year
1) Entrance Fees		
2) Annual Fees/Subscriptions	0	0
3) Seminar/Program Fees	0	0
4) Consultancy Fees	0	0
5) Others (Specify)	0	0
TOTAL	0	0

CENTRE FOR DNA FINGERP SCHEDULES FORMING PART OF BAL		(Amount - Rs.)
	Current Year	Previous Year
SCHEDULE 16 - INCOME FROM ROYALITY, PUBLICATION ETC. :		
1) Income from Royality	0	0
2) Income from Publications	0	0
3) Others (Specify)	0	0
TOTAL	0	0

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015 (Amount - Rs.)		
	Current Year	Previous Year
SCHEDULE 17 - INTEREST EARNED : 1) On Term Deposits a) With Schedule Banks b) With Non-Scheduled Banks c) With Institutions d) Others 2) On Saving Accounts a) With Schedule Banks b) With Non-Scheduled Banks c) post Office Savings Accounts d) Others 3) On Loans a) Employees/Staff b) Others 4) Interest on Debtors and Other Receivables	$\begin{array}{r} 2104449.88 \\ 0.00 \\ 0.00 \\ 0.00 \\ \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{r} 43238.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ \\ \\ 0.00 \\ 0.00 \end{array}$
TOTAL	2104449.88	43238.00
Note :- Tax deducted at source to be indicated		

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015		(Amount - Rs.)
SCHEDULE 18 - OTHER INCOME	Current Year	Previous Year
1) Profit on Sale/disposal of Assets:	0.00	0.00
a) Owned assets	0.00	0.00
b) Assets acquired out of grants, or received free of cost	0.00	0.00
2) Export Incentives realized	0.00	0.00
3) Fees for Miscellaneous Services	0.00	0.00
4) Miscellaneous Receipts		
5) Other Receipts		
Sundry Receipts	3254256.00	3150268.00
Application Fee	235800.00	384730.00
Sales Of Tender Forms	47000.00	19500.00
Licence Fee	54600.00	53880.00
Interest On Computer Advance,Conveyance Advance And HBA	17526.00	12488.00
Leave Salary-Pension Contribution	0.00	0.00
Provident Fund Salwage	0.00	0.00
Free.Gifts-Donations	0.00	0.00
TOTAL	3609182.00	3620866.00
CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015		(Amount - Rs.)
SCHEDULE 19 - INCREASE/(DECREASE) IN STOCK OF FINISHED GOODS \& WORK IN PROGRESS :	Current Year	Previous Year
-Finished Goods	0	0
-Work-in-progress	0	0
Total (a)	0	0
b) Less: Opening stock		
-Finished Goods	0	0
-Work-in-progress	0	0
Total (b)	0	0
NET INCREASE/(DECREASE) [a-b]	0	0

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015	(Amount-Rs.)	
	Current Year	Previous Year
SCHEDULE 20 - ESTABLISHMENT EXPENSES :		
a) Salaries and Wages	68828459.00	54269773.00
b) Allowances and Bonus	50691650.00	41267382.00
c) Contribution to Provident Fund	2619770.00	3213621.00
d) Contribution to Other Fund (NPS)	2358636.00	1736649.00
e) Staff Welfare Expenses - Medical charges	2136167.00	2195107.00
f) Expenses on Employees Retirement and Terminal Benefits	1808379.00	4029927.00
g) Others (specify) - Staff leased House	0.00	0.00
TOTAL	128443061.00	106712459.00
CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015 (Amount - Rs.)		
	Current Year	Previous Year
SCHEDULE 21 - OTHER ADMINISTRATIVE EXPENSES :		
a) Purchases	77276637.48	54146570.00
b) Electricity and power	21857964.00	20703811.00
c) Water charges	898347.00	592058.00
d) Insurance	90857.00	106691.00
e) Repairs and maintenance	16452976.00	13737055.00
f) Rent, Rates and Taxes	18919374.00	18691350.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS SCHEDULES FORMING PART OF BALANCE SHEET AS AT 31st MARCH 2015		
	Current Year	Previous Year
SCHEDULE 21 - OTHER ADMINISTRATIVE EXPENSES :		
g) Vehicles Running and Maintenance	1254153.00	949931.00
h) Postage, Telephone and Communication Charges	3037666.00	2198082.00
i) Printing and Stationary	1151024.00	1701402.00
j) Travelling and Conveyance Expenses	9897639.57	9099650.00
k) Expenses on Seminar/Workshops	316177.00	654385.00
l) Subscription Expenses	38693.00	60872.00
m) Expenses on Fees	80874.00	322746.00
n) Auditors Remuneration	56180.00	71326.00
o) Hospitality Expenses	772072.00	826450.00
p) Professional Charges	5985002.00	3722520.00
q) Advertisement and Publicity	3034697.00	2821705.00
r) Bank Charges	4818.00	14931.00
s) Security \& Cleaning Contract Charges	21011830.00	18839558.00
t) Training Course /Symposia	-88482.00	211800.00
u) Other Contingencies	1881362.00	1502085.00
v) Liveries \& Blankets	30819.00	102830.00
w) Other Research Expenses	22011273.00	26140605.00
x)Office Books	13020.00	48688.00
y)Over Heads	1800000.00	0.00
TOTAL	207784973.05	177267101.00

Schedule 24: Significant Accounting Policies \& Schedule 25: Contingent Liabilities \& Notes on Account for the period ended 31/03/2015

1. Method of Accounting:

a. The accounting system adopted by the organization is on "accrual basis".
b. The organization has been getting plan Grant-In-Aid under the "Non-recurring" \& "Recurring" heads.
2. Revenue recognition:

Income comprises of Grant-in-Aid, Internal Resources through services and interest from short term deposits. Income accounted on the basis of the Cash/DD/Cheques/Cr notes/ on line transfers received.
3. Fixed Assets:
(a) Fixed assets are stated at cost. Cost includes freight, duties, and taxes etc.,
(b) Depreciation: Depreciation Account on Fixed Assets has since been prepared at the rate prevailing to the concerned Fixed Assets as specified in the Income Tax Act, 1961 on Written Down Value Method of Depreciation.
(c) Capital work in progress has been entered to the extent of the last running account bills paid.
(d) Realization on sale of obsolete/surplus fixed assets which is not required for the purpose of research activities are adjusted against capital cost.
4. Inventories:

All purchases of chemicals, glassware and other consumables have been charged to consumption at the time of purchase.
5. Foreign Currency transactions:

Foreign Currency transactions are recognized in the books at the exchange rates prevailing on the date of transaction.
6. Investments:

Investments in STDR's are stated at book values.
7. Advances:

It is observed from the objection book register that advances to suppliers for consumables \& Equipments are to be reconciled and adjustment entries are to be passed in the books of accounts.
8. The previous year balances have been regrouped/rearranged, wherever necessary.

Director CDFD Head- Finance \& Accounts CDFD
for K R Srinivasan \& Co Chartered Accountants
[K R SRINIVASAN]
Place: Hyderabad
Date: 15/05/2015

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD

CLARIFICATION ON NOTES ON ACCOUNTS: 2014-15

* Notes on Accounts 1 to 2 \& 4 to 6: Method of Accounting/ Revenue recognition/Fixed Asset/ Inventories/ Foreign Currency transactions/Investments:

These are all only informatory items.

* Notes on Accounts 3: Fixed Assets:

Depreciation has been calculated on Written down Value method and at the rates prevailing to the concerned Fixed Asset as specified on the Income Tax Act, 1961 and set off against the Grant-in-Aid (non-recurring). The details of the Depreciation on Fixed Assets are at Schedule -8 is an integral part of the financial statements.

* Notes on Accounts 7: Advances:

The observation of the audit has been noted. The action has already been initiated to reconcile the objection book register.

B J ACHARYULU
Head Finance \& Accounts
CDFD

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
Annexure-I
Details of Closing balances of various Earmarked / Endowement Funds (Refer Sch-3) For the Year Ended 31st MARCH 2015
(Amount in Rs.)

Previous year	Proj No	Particulars	Current Year
-13869143	COE1	COE1	-13242813
-23581573	COE2	COE2	-13991880
-630047	P-03	"Transgenesis and Genetic basis of Pathogen Resistance in the Silkworm, Bombyx Mori	-630047
244305	P-09	"NMITLI Project on - Latent M.Tuberculosis: New targets, Drug delivery systems, Bio enhancers \& Therapeutics"	244305
-28332	P-10	"Role of upstream sequence elements in Hyper activation of transcription from Baculovirus polyhedrin gene promoter"	-28332
-576590	P-100	Effect of raective oxygen species on T-Cell immune response: An approach to understand the molecular mechanism of immunosuppression during tuberculosis - National Bioscience Award	-576590
3727878	P-101	Role of inositol pyrophosphates in cell physiology: Investigating the biochemical significance of protein pyrophosphorylation - Senior Fellowship	6859801
-27922	P-102	Understanding the role of Mycobacterium tuberculosis heat shockprotein 60 as Th1/Th2 immuno modular	-27922
-300000	P-103	National Bioscience Award - Regulation of mast cell signaling, apoptosis and surface receptors	-300000
-3307223	P-104	Virtual Centre of Excellence on Epigenetics	-1160508
-862685	P-105	Cloning, Characterization and analysis of chromosomal rearrangements in human genetic disorders	-862685
-227909	P-106	Clinical, Biochemical and molecular analysis of treatable lysosomal storage disorders	0
15400	P-107	IYBA Project - Mechanism and role of bacterial cell-cell signaling molecules in plant defense response	1036691
-454643	P-108	Establishment of EBV transformed cell lines from families with rare genetic disorders	-454643
57690	P-109	Molecular dissection of PI3-Kinase/Akt pathway by suing proteomics based approach: A study to identify novel potential oncogenes and tumor suppressors	3351336
-191391	P-110	India-Japan research project title"Identification and analysis of sex determining genes in silkmoths"	-191391
450416	P-111	Ramalingaswami Fellowship - Refractoriness mechanism in Mosquito: cracking molecular codes at genomic scale	1169677
-450859	P-114	Evaluating the Calcineurin-NFAT Pathway and its regulators superoxide dismutase (SOD) AND RCAN1 (regular of Calcineurin) Down Syndrome	-450859
-1251366	P-116	DBT-India and AIST - Japan : Understanding molecular mechanisms controlling dual role of Ras, Sirtuins and CARF in relation to cellular proliferation and senescence: Novel Strategy for developing cancer therapeutics	-1251366
-2892	P-119	Analysis of DNA copy number alterations in esophaeal cancer	-2892
-1474723	P-120	Effect of reactive oxygen species on macrophage signalosome: impact on antigen presentation functions and T Cell priming responses	-769484
-1130866	P-121	Identification and characterization of PTEN regulators	-1130866
4377125	P-122	Understanding the role of Hox genes in anterior-posterior axis determination of the central nervous system	388692
513310	P-123	Establish a Max Planck Partner Group for Genetic Diversity Studies at CDFD	1402135
-549916	P-124	Preparation and characterization of peroxometal compounds and studies and their biological significance in cellular signalling	-748411
172619	P-125	Mechanistic studies on the role of protein kinase Snfilk in cell cycle and cancer	0
35390	P-126	Rho-dependent transcription termination machinery: mechanism of action	442524
283993	P-127	Systematic studies on the functional network of phosphatases in cell life and death	-294516
-608942	P-128	Mechanism of iron acquisition and iron homeostasis in an opportunistic human pathogen Candida glabrata	-77108
6737	P-13	"Programme to delineate gene functions in the post - genomics era by a systematic two gene knockout method"	3947
2865531	P-130	Comparative genetic analysis of sex chromosomes and sex determining genes in silkmoths	-2550050

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
Annexure-I Details of Closing balances of various Earmarked / Endowement Funds (Refer Sch-3) For the Year Ended 31st MARCH 2015
(Amount in Rs.)

Previous year	Proj No	Particulars	Current Year
-1245339	P-131	Structural and functional studies of Acyl CoA Binding proteins from plasmodium falciparum	398632
-2166471	P-132	Characterization of tumor suppressor function of ARIDIB, a component of the human SWI/SNF chromatin remodelling complex	-640003
534614	P-133	Investigating the role of Hox gene deformed in central nervous system patterning in Drosophila melanogaster	460117
-156437	P-134	Exploration of wild silk moth biodiversity in Manipur and their genetic characterization using molecular markers	-77061
-298323	P-135	Sys TB: A Network Program for Resolving the Intracellular Dynamics of Host Phthogen Interaction in TB Infection	-357268
13618	P-136	Raf Kinase - a key target for modem-day theraphy against tumors	-292334
44141	P-137	Signaling pathways involved in down regulation of proinflammatory responses by PPE18 protein of Mycobacterium tuberculosis: Implication of PPE18 as therapeutics	759474
-638079	P-138	Co-evaluation of Dnmt3I and Genomic imprinting	-1353238
20000	P-139	Evaluating the role of Sirtuins and epigenetic changes during cellular senescense in context of p53 status	20000
146091	P-140	Development of baculovirus resistant silkworms strains through synthetic miRNA based knockdown of essential viral genes	-403336
-223537	P-141	Evaluating the functional role of PTEN interacting proteins in cell survival signaling and tumor suppression	-125000
-401878	P-142	Identification of H3K4 TRI Demethylase involved in erasing H3K4 trimethylation marks at E2F Responsive promoters	-280596
-751303	P-143	Microarray based characterisation of squamous cell carcinoma of the tongue occuring in non smokers	-534504
0	P-144	Tri-National Training Program for Psychiatric Genetics	424130
-1064782	P-145	"H3K4 HMT family regulatescell cycle progression	-1112243
763439	P-146	"Role of MLL in ribosomal RNA transcription	433858
41311	P-147	"The Effect of Parental Education, Ethics of Research Participation and Array Comparative Genomic Hybridization in Subjects with Mental Retardation (MR) and /or Autism	-677839
270865	P-149	"Role of SUMOylation in the pathobiology of Candida Glabrata	-1016335
-28096	P-150	"Genetic and genomic basis of the evolution of bombycid and sturniid silkmoths	0
594981	P-151	"Human Exome Sequencing to Identify Novel Genes for Medelian Disorders	-601366
1114145	P-152	"Global transcriptomics of sex specific spilicing	29100
3613562	P-153	"An attractive and promising stragegy for early cancer diagnosis through the assembly of the human cancer volatome""	641552
87432	P-154	"Rational design, synthetic strategies for developing organometallic anticancer compounds based on organotin and organoiron	30832
335194	P-155	"Studies on thecellular roles of calcium signalling proteins in Neurospora crassa	335194
926632	P-156	"Targeting microbial quorum sensing to demonstrate potential application of cell-cell signaling molecules from Xanthomonas group of plant pathogen in diesease control	-175165
944665	P-157	"Identification of novel antifungal drug and delineation of drug resistance mechanisms in an opportunistic human fungal pathogen Candida glabrata	204372
621787	P-158	"Modulation of host immune responses by a PPE Protein of Mycobacterium tuberculosis: Understanding its role in host - pathogen cross-talk	-1379658
300000	P-159	"Gene Targeting of microbial isolates to demonstrate potential plant growth promoting (PGP) traits by third generation sequencing	0
363884	P-160	"Understanding the role of novel adhesins of Xanthomonas oryzae PV orzae in Virulence and colonization in Rice	208333
350000	P-161	"Analysis of co-regulation between DNA replication activity and amino acid homeostatis by transcription factor IciA/ArgP in Eschericia coli	84656
235671	P-162	Characterization and design of inhibitors of Mycobacterium tuberculosis transcription	-316464
2006048	P-163	Unravelling new functions for the H-NS family of proteins in Gram-negative bacterial pathogens	1052471

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
Annexure-I
Details of Closing balances of various Earmarked / Endowement Funds (Refer Sch-3) For the Year Ended 31st MARCH 2015
(Amount in Rs.)

Previous year	Proj No	Particulars	Current Year
-26671	P-164	"A Yeast based screen for discovery of novel sirtuin inhibitors as anticancer agents	-24671
1569682	P-165	"Identification and functional characterization of immune response genes in silkmoths	330135
0	P-166	"Sequencing analysis of transcriptome variants in early-onset sporadic rectal cancer	2165638
0	P-167	"To elucidate the role of MLL complex in epigenetic specification of centromeres	633780
0	P-168	"A Search for nucleus -limited genes in Neurospora	788623
0	P-169	"Implementation of 3 year DNB Program in Medical Genetics by Department of Biotechnology in colloboration with National Board of Examination ag SGHR, NIBMG\&CDFD	1758108
-687887	P-17	"Studies on inosital-phosphate synthesis - a novel enzyme from Mycobacterium tuberculosis H37RV" - Transfer from IMTECH, Chandigarh	-687887
0	P-170	"Women Scientist Scheme ""Identification and character of deregulated micro RNAs in defined sub-set of early onset sporadic rectal cancer patients using transcriptome sequencing""	277449
0	P-171	"Role of vesicle-mediated transport and chromatin remodelling in the virulence of Candida glabrata	1754447
0	P-172	"Molecular Characterization of early onset sporadic rectal cancer	1461747
0	P-173	"Development and application of a next generation sequencing approach for molecular genetic analysis of lysosomal storage disorders	584882
0	P-174	"Is non-canonical Wnt signalling a major player in early-onset sporadic rectal cancer	500000
0	P-175	"Multi Centri Collaborative study of the Clinical, Biochemical and Molecular Characterization of Lysosomal storage disorders in India - The initiative for research in Lysosomal Storage Disorders""	-509714
0	P-176	International Atomic Energy Agency	200103
-274286	P-18	"Mapping of receptor binding site on the Eythrocyte binding of malaria parasyte"	-274286
-1888111	P-20	"Genomic Micro array R\&D Programmes on infectious diseases and Neurological Disorders"	-1888111
0.5	P-22	"Biotechnology for leather - towards cleaner processing"	0.5
-34495	P-23	"Development of PCR base assays for detection of GMO S"	-34495
-529111	P-25	"Functional studies of Human Immuno - deficiency Virus Type-2 (HIV-2) Viral protien X (VPX)"	-529111
-79533	P-26	Occurrence of Mutations in Non dividing cells of Escherichia Coli"	-79533
-37624	P-28	Baculovirus resistance in transgenic silkworms	-37624
-310302	P-29	"Development of Hospital Surveillance system by advanced diagnostics method \& Molecular DNA fingerprinting techniques"	-310302
2045696	P-30	Transcription termination and anti termination in E-coli	2045696
746453	P-31	Role of K-ras in Lung type II epithelial cells	746453
-234000	P-33	"Molecular and Epidemiological characterisation of cryptosporidium - An enteric protozoon parasite"	-234000
26334	P-34	"Molecular analysis of lepidopteran - specific immune protiens from silkmoths"	26334
-283883	P-35	"Identification, Characterization and Physical mapping of Z-Chromosome linked genes of the silk worm, Bombyxmori"	-283883
2073896	P-36	"Development of Artificial retina using Bacterio rhodospin and genetically engineered analogues "	2073896
-4058	P-40	"Antioxidants as a potential immuno adjuvant in anti tuberculosis immunotherapy"	-4058
1873605	P-41	"Construction, characterization and analysis of expressed sequences from silkworm "	1873605
-2237285	P-42	"Structural and functional studies on Mycobacterium tuberculosis heat shock proteins".	-2237285
685906.7	P-43	"A generalized mechanism of transcription termination in prokaryotes: a quest for mechanism based transcription inhibitors for microbial pathogens".	685906.7
-457538	P-44	"Understanding of role of Ras and NO / iNOS signalling in promotion of hepatocellular carcinomas with persistent HBV infection"	-457538
605714	P-45	Specialized chromatin structures as epigenetic imprints to distinguish parental alleles".	605714
-1586965	P-47	Research cum Training for DRDO Programme	-1586965

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS For the Year Ended 31st MARCH 2015
(Amount in Rs.)

Previous year	$\begin{aligned} & \text { Proj } \\ & \text { No } \end{aligned}$	Particulars	Current Year
151826	P-48	'Molecular characterization of human liver stem cells for use in the treatment of hepatic diseases'.	151826
804660	P-49A	International Atomic Energy Agency (IAEA)	1041952
-284065	P-51	"Understanding the mechanism of doxorubicin resistance in breast cancer celline MCF-7"	-284065
-1231118	P-52	"Nucleo Cytoplasmic transport of HIV - 1 Vpr "	-1231118
-37877	P-54	"Study of viability of Mycobacterium leprae in clinical samples and possibility of its presence in the environment using nucleic acid amplification techniques."	-37877
224	P-55	"Identification of DNA Markers for baculovirus resistance in silkworm, Bombyx mori"	224
-1231164	P-56	"Genetics of transcription-replication interplay and of stress adaptation in bacteria"	-1231164
-2215024	P-59	"An integrated Approach towards understanding the biology of Mycobacterium tuberculosis: Genetic, biochemical, immunological and structural analyses."	-2215024
482124	P-60	"National Database of Prevalent Genetic Disorders in India: Development, Curation and Services"	482124
-280000	P-61	"Dissection of a novel phenotype of lethal accumulation of potassium in Escherichia coli mutants defective in thioredoxin/thioredoxin reductase and nucleoied protein H-NS"	-280000
-278928	P-62	"HIV - 1 Pathogenesis: Role of Integrase in Reverse Transciption and Nuclear Transport of Viral Genome"	-278928
-837574	P-63	"Upgradation of the existing computing infrastructure at the Bioinformatics facility at CDFD"	-837574
-158	P-64	Biotechnology for Leather: Towards cleaner processing phase-II	-158
-582647	P-65	"Molecular, genetic and functional analysis of the chromosomal plasticity region of the gastric pathogen Helicobater pylori"	-582647
20617169	P-65A	APEDA-CDFD Centre for Basmati DNA Analysis	21828405
-681246	P-66	Human Epigenome Variation: Analysis of CpG island methylation in chromosomes 18 and Y , and in some Hox, insulin signaling and chromatin reprogramming genes	-681246
-113545	P-67	Identification of novel Esophageal Squamous cell carcinoma (ESCC) genes by using a combination of array-based CGH and gene expression micro arrays	-113545
-59874	P-68	Identification of High risk individual with pre-cancerous states of esophageal cancer.	-59874
-21336	P-70	Identification of disease causing mutations in familial hypertrophic cardiomyopathy (FHC) patients from Andhra Pradesh	-21336
-1421653	P-72	Nuances of non coding DNA near insulin-responsive genes.	-1421653
-857136	P-73	Identification and characterization of pancreatic cancer genes located within novel localized cpy number alterations	-857136
-10840	P-75	Preparing blueprint for the macromolecular crystallography beamline at Indus-II synchrotron source	-10840
-50234	P-76	A study of molecular markers in childhood autism with special references to nuclear factors - α APPA B	-50234
124277	P-77	Functional characterization of Mycobacterium tuberculosis PE/PPE proteins having SH 3 binding domain : Understanding their role in modulating macrophage functions	124277
1304	P-78	Task force- IMD Newborn screening for Congenital Hypothyroidism \& Congenital Adrenal Hyperplasia: A multicentric study	1304
-105086	P-79	Understanding the role of AGE proteins in inducing inflammatory responses and its regulation	-105086
-608222	P-80	Referral centre for detection of genetically modified foods employing DNA-based markets	-608222
143470	P-81	Reconstructing Cellular Networks: Two-component regulatory systems	143470
463453	P-81A	Financial assistance for award of J C Bose Fellowship to Dr J Gowrishankar	62620
-369021	P-82	Functional genomic analysis of Candida Glabrata-macrophage	-369021
-1155594	P-83	Prokaryotic Transcription termination factor, Rho: Mechanism of Action and Biology	-1155594
-1150	P-84	Preparing for vaccine efficacy trials: Baseline epidemiology, improved diagnosis, markers of protection and phase I/II trials	-1150

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
Details of Closing balances of various Earmarked / Endowement Funds (Refer Sch-3) For the Year Ended 31st MARCH 2015
(Amount in Rs.)

Previous year	Proj No	Particulars	Current Year
-106479	P-84A	Human epigenetic to the rescue of human identification process: Enriching human DNA from DNA mixture employing antibodies directed against 5-methylcytosine followed by whole genome amplification	-106479
-1118755	P-85	IdeR associated gene regulatory network in mycobacteria	-1118755
-65698	P-87	Comparative genomics of wild silkmoths	-65698
218818	P-88	Introduction of anti-baculoviral property in commercial silkworm strains by expression of multiple RNAi viral targets	0
-636286	P-90	Role of Yapsins in the Pathobiology of Candida Glabrata	-636286
-1098900	P-91	DMMT3L: epigenetic correlation with cancer	-1098900
268823	P-92	Swarnajayanti fellowship proj on "Designing transcription anti-terminators: a novel approach for making new inhibitors of gene expression"	268823
-605745	P-93/ A1	Virtual Centre of Excellence on multidisciplinary approaches aimed at interventions against tuberculosis	-611833
-2469833	P-93/ A2	Virtual Centre of Excellence on multidisciplinary approaches aimed at interventions against Mycobacterium tuberculosis	-3025061
0	P-93B2 (II)	Evaluation of peptides / small molecules targeting ESAT-6:B2M interaction and PPE18-TLR2 interaction as potent anti tuberculosis therapautics	1110000
-276552	P-97	Proteome-wide Analysis of Serine pyrophosphorylation by inositol pyrophosphates	-276552
-203419	P-98	Role of cell - cell signaling mediated by Diffusible signaling factor (DSF) in Xanthomonas virulence	-236042
-567516	P-99	Role of inositol Pyrophosphates in eukaryotic cell growth, proliferation and ribosomae biogenesis	-567516
-257737818			-13731478.8

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
Annexure-II
Details of Closing balances of various Earmarked / Endowement Funds (Refer Sch-3) For the Year Ended 31st MARCH 2015
(Amount in Rs.)

Previous year	Proj No	Particulars	Current Year
11713327	COE-I	COE for Genetics and Genomics of silkmoths	11713327
10000000	$\begin{gathered} \text { COE- } \\ \text { II } \end{gathered}$	DBT Centre of Excellence for Microbial Biology	10156100
600000	P-03	"Transgenesis and Genetic basis of Pathogen Resistance in the Silkworm, Bombyx Mori	600000
329289	P-07	"Collection of well characterised clinical samples and strains of Mycobacterium tuberculosis and development of molecular techniques for detection of drug resistant strains - Multi Centric Project"	329289
588400	P-09	"NMITLI Project on - Latent M.Tuberculosis: New targets, Drug delivery systems, Bio enhancers \& Therapeutics"	588400
47400	P-10	"Role of upstream sequence elements in Hyper activation of transcription from Baculovirus polyhedrin gene promoter"	47400
17784	P-100	Effect of raective oxygen species on T-Cell immune response: An approach to understand the molecular mechanism of immunosuppression during tuberculosis - National Bioscience Award	17784
12024311	P-101	Role of inositol pyrophosphates in cell physiology: Investigating the biochemical significance of protein pyrophosphorylation - Senior Fellowship	13084732
698550	P-102	Understanding the role of Mycobacterium tuberculosis heat shockprotein 60 as Th1/Th2 immuno modular	698550
1000000	P-107	IYBA Project - Mechanism and role of bacterial cell-cell signaling molecules in plant defense response	1000000
915278	P-109	Molecular dissection of P13-Kinase/Akt pathway by suing proteomics based approach: A study to identify novel potential oncogenes and tumor suppressors	915968
206800	P-111	Ramalingaswami Fellowship - Refractoriness mechanism in Mosquito: cracking molecular codes at genomic scale	206800
0	P-112	Ramanujan Fellowship	0
670095	P-113	Clinical and molecular genetic analysis of squamous cell carcinoma of the tongue	670095
475900	P-114	Evaluating the Calcineurin-NFAT Pathway and its regulators superoxide dismutase (SOD) AND RCAN1 (regular of Calcineurin) Down Syndrome	475900
4580214	P-115	Setting up of the National Institute of Animal Biotechnology	4580214
800000	P-116	DBT-India and AIST - Japan : Understanding molecular mechanisms controlling dual role of Ras, Sirtuins and CARF in relation to cellular proliferation and senescence: Novel Strategy for developing cancer therapeutics	800000
183443	P-118	Construction of regulatory networks in Mycobacterium tuberculosis through analysis of gene expression data and transcription regulation predictions. (MOU with Russian Foundation)	183443
529750	P-12	Molecular genetics and Functional genomics of M. Tuberculosis patient isolates in India	529750
9889367	P-122	Understanding the role of Hox genes in anterior-posterior axis determination of the central nervous system	10824792
540436	P-123	Establish a Max Planck Partner Group for Genetic Diversity Studies at CDFD	1022127
402016	P-126	Rho-dependent transcription termination machinery: mechanism of action	591694
6281319	P-127	Systematic studies on the functional network of phosphatases in cell life and death	6755620
1609427	P-128	Mechanism of iron acquisition and iron homeostasis in an opportunistic human pathogen Candida glabrata	1690360
1334600	P-13	"Programme to delineate gene functions in the post - genomics era by a systematic two gene knockout method"	1334600
81500	P-130	Comparative genetic analysis of sex chromosomes and sex determining genes in silkmoths	81500
964215	P-133	Investigating the role of Hox gene deformed in central nervous system patterning in Drosophila melanogaster	1018512

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
Details of Closing balances of various Earmarked / Endowement Funds (Refer Sch-3) For the Year Ended 31st MARCH 2015
(Amount in Rs.)

Previous year	Proj No	Particulars	Current Year
5500000	P-135	Sys TB: A Network Program for Resolving the Intracellular Dynamics of Host Phthogen Interaction in TB Infection	5500000
130979	P-137	Signaling pathways involved in down regulation of proinflammatory responses by PPE18 protein of Mycobacterium tuberculosis: Implication of PPE18 as therapeutics	815232
565518	P-138	Co-evaluation of Dnmt3I and Genomic imprinting	565518
500000	P-139	Evaluating the role of Sirtuins and epigenetic changes during cellular senescense in context of p53 status	500000
5163243	P-14	"Comparitive and functional genomics approaches for the identification and characterization of genes responsible for multi drug resistance of mycobacterium tuberculosis"	5163243
0	P-140	Development of baculovirus resistant silkworms strains through synthetic miRNA based knockdown of essential viral genes	500000
624495	P-142	Identification of H3K4 TRI Demethylase involved in erasing H3K4 trimethylation marks at E2F Responsive promoters	651933
1546279	P-145	"H3K4 HMT family regulatescell cycle progression	1868000
686219	P-146	"Role of MLL in ribosomal RNA transcription	1000000
468720	P-149	"Role of SUMOylation in the pathobiology of Candida Glabrata	468720
6000000	P-15	"The Helicobacter Pylori genome programme - Genome sequencing, functional analysis and comparitive genomics of the strains obtained from Indian patients"	6000000
0	P-153	"An attractive and promising stragegy for early cancer diagnosis through the assembly of the human cancer volatome""	3000000
0	P-154	"Rational design, synthetic strategies for developing organometallic anticancer compounds based on organotin and organoiron	132495
0	P-155	"Studies on thecellular roles of calcium signalling proteins in Neurospora crassa	0
0	P-156	"Targeting microbial quorum sensing to demonstrate potential application of cell-cell signaling molecules from Xanthomonas group of plant pathogen in diesease control	0
380852	P-157	"Identification of novel antifungal drug and delineation of drug resistance mechanisms in an opportunistic human fungal pathogen Candida glabrata	992265
0	P-158	"Modulation of host immune responses by a PPE Protein of Mycobacterium tuberculosis: Understanding its role in host - pathogen cross-talk	299941
1814901	P-16	NMITLI Project on - Latent M.Tuberculosis: New targets, Drug delivery systems, Bio enhancers \& Therapeutics	1814901
0	P-167	"To elucidate the role of MLL complex in epigenetic specification of centromeres	39304
0	P-168	"A Search for nucleus -limited genes in Neurospora	31450
244400	P-17	"Studies on inosital-phosphate synthesis - a novel enzyme from Mycobacterium tuberculosis H37RV" - Transfer from IMTECH, Chandigarh	244400
344020	P-18	"Mapping of receptor binding site on the Eythrocyte binding of malaria parasyte"	344020
7246511	P-19	"Construction of Integrated RAPD, RFLP and Microsatellite linkage map of the Silkworm, Bombyx mori and its corelation with the Phenotypic linkage Map"	7246511
27331134	P-20	"Genomic Micro array R\&D Programmes on infectious diseases and Neurological Disorders"	27331134
5300000	P-21	Development of Versatile, portable software for Bio-informatics	5300000
603747	P-22	"Biotechnology for leather - towards cleaner processing"	603747
375999	P-23	"Development of PCR base assays for detection of GMO S"	375999
0	P-24	Establishing a central facility on "Aerosol challenge in a containment facility"	0
600000	P-25	"Functional studies of Human Immuno - deficiency Virus Type-2 (HIV-2) Viral protien X (VPX)"	600000
500000	P-26	Occurrence of Mutations in Non dividing cells of Escherichia Coli"	500000

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
Details of Closing balances of various Earmarked / Endowement Funds (Refer Sch-3) For the Year Ended 31st MARCH 2015
(Amount in Rs.)

Previous year	$\begin{aligned} & \text { Proj } \\ & \text { No } \end{aligned}$	Particulars	Current Year
260367	P-29	"Development of Hospital Surveillance system by advanced diagnostics method \& Molecular DNA fingerprinting techniques"	260367
3746538	P-30	Transcription termination and anti termination in E-coli	3746538
3131006	P-31	Role of K-ras in Lung type II epithelial cells	3131006
4857938	P-36	"Development of Artificial retina using Bacterio rhodospin and genetically engineered analogues "	4857938
358470	P-39	"Computational analysis and functional characterization of mycobacterial protien(s) interacting with macrophase effector - APC functions - an approach to understand the molecular basis of pathogenesis of M. tuberculosis"	358470
49738	P-40	"Antioxidants as a potential immuno adjuvant in anti tuberculosis immunotherapy"	49738
3894086	P-41	"Construction, characterization and analysis of expressed sequences from silkworm"	3894086
9500000	P-42	"Structural and functional studies on Mycobacterium tuberculosis heat shock proteins".	9500000
11970000	P-43	"A generalized mechanism of transcription termination in prokaryotes: a quest for mechanism based transcription inhibitors for microbial pathogens".	11970000
3331377	P-45	Specialized chromatin structures as epigenetic imprints to distinguish parental alleles".	3331377
416137	P-46	"Effect of reactive oxygen species (ROS) on immune response : Relevance in immunosuppression and Pathogenesis"	416137
377567	P-47	Research cum Training for DRDO Programme	377567
1413292	P-48	'Molecular characterization of human liver stem cells for use in the treatment of hepatic diseases'.	1413292
198095	P-50	"Cervical cancer prevention by multiple strategies in rural community in Andhra pradesh"	198095
401738	P-51	"Understanding the mechanism of doxorubicin resistance in breast cancer celline MCF-7"	401738
1359129	P-52	"Nucleo Cytoplasmic transport of HIV - 1 Vpr "	1359129
1114495	P-53	Collaborative research project on molecular ecology and systematics	1114495
1163764	P-56	"Genetics of transcription-replication interplay and of stress adaptation in bacteria"	1163764
2131403	P-57	Improved genome annotation through a combination of machine learning and experimental methods: Plasmodium falciparum as a case study.	2131403
63000	P-58	"Indo-Malaysian collaboration in Bioinformatics: Development and maintenance of a web-portal hosting databases and tools of common interest"	63000
32974662	P-59	"An integrated Approach towards understanding the biology of Mycobacterium tuberculosis: Genetic, biochemical, immunological and structural analyses."	32974662
5720800	P-60	"National Database of Prevalent Genetic Disorders in India: Development, Curation and Services"	5720800
4308314	P-62	"HIV - 1 Pathogenesis: Role of Integrase in Reverse Transciption and Nuclear Transport of Viral Genome"	4308314
9637574	P-63	"Upgradation of the existing computing infrastructure at the Bioinformatics facility at CDFD"	9637574
600585	P-64	Biotechnology for Leather: Towards cleaner processing phase-II	600585
260000	P-65	"Molecular, genetic and functional analysis of the chromosomal plasticity region of the gastric pathogen Helicobater pylori"	260000
16924622	P-65A	APEDA-CDFD Centre for Basmati DNA Analysis	16924622
264430	P-66	Human Epigenome Variation: Analysis of CpG island methylation in chromosomes 18 and Y , and in some Hox, insulin signaling and chromatin reprogramming genes	264430
622747	P-67	Identification of novel Esophageal Squamous cell carcinoma (ESCC) genes by using a combination of array-based CGH and gene expression micro arrays	622747
235593	P-69	ICMR adhoc New Scheme Understanding the role of PE/PPE family of M tuberculosis in the activation of HIV virus type I long terminal repeat (HIV-ILTP)	235593
1012807	P-70	Identification of disease causing mutations in familial hypertrophic cardiomyopathy (FHC) patients from Andhra Pradesh	1012807
1573795	P-71	Referral Centre for Genetic fidelity testing of tissue culture raised plants	1573795

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS
Details of Closing balances of various Earmarked / Endowement Funds (Refer Sch-3) For the Year Ended 31st MARCH 2015
(Amount in Rs.)

Previous year	Proj No	Particulars	Current Year
45653	P-72	Nuances of non coding DNA near insulin-responsive genes.	45653
1000000	P-74	Molecular basic of insect plant interactions in rice under the national fund for basic and strategic research in agriculture	1000000
33672	P-75	Preparing blueprint for the macromolecular crystallography beamline at Indus-II synchrotron source	33672
245266	P-76	A study of molecular markers in childhood autism with special references to nuclear factors - α APPA B	245266
1543605	P-77	Functional characterization of Mycobacterium tuberculosis PE/PPE proteins having SH3 binding domain : Understanding their role in modulating macrophage functions	1543605
0	P-78	Task force- IMD Newborn screening for Congenital Hypothyroidism \& Congenital Adrenal Hyperplasia: A multicentric study	0
496826	P-79	Understanding the role of AGE proteins in inducing inflammatory responses and its regulation	496826
4192480	P-80	Referral centre for detection of genetically modified foods employing DNA-based markets	4192480
195728	P-81A	Financial assistance for award of J C Bose Fellowship to Dr J Gowrishankar	205073
1480220	P-82	Functional genomic analysis of Candida Glabrata-macrophage	1480220
912255	P-83	Prokaryotic Transcription termination factor, Rho: Mechanism of Action and Biology	912255
388583	P-83A	Understanding the mechanism of Azadirachtin-mediated cell signaling: role in anti-inflammation and anti-tumorigenesis	388583
44854	P-84	Preparing for vaccine efficacy trials: Baseline epidemiology, improved diagnosis, markers of protection and phase I/II trials	44854
1430573	P-84A	Human epigenetic to the rescue of human identification process: Enriching human DNA from DNA mixture employing antibodies directed against 5-methylcytosine followed by whole genome amplification	1430573
374630	P-89	Characterization of Mycobacterium tuberculosis transcription machinery and Bacteriophage metagenomics	374630
1376869	P-90	Role of Yapsins in the Pathobiology of Candida Glabrata	1376869
932151	P-91	DMMT3L: epigenetic correlation with cancer	932151
8500000	P-92	Swarnajayanti fellowship proj on "Designing transcription anti-terminators: a novel approach for making new inhibitors of gene expression"	8500000
2212534	$\begin{gathered} \text { P-93/ } \\ \text { A1 } \\ \hline \end{gathered}$	Virtual Centre of Excellence on multidisciplinary approaches aimed at interventions against tuberculosis	2212534
840648	$\begin{gathered} \hline \text { P-93/ } \\ \text { A2 } \end{gathered}$	Virtual Centre of Excellence on multidisciplinary approaches aimed at interventions against Mycobacterium tuberculosis	900000
246320	P-95	Construction of regulatory networks in prokaryotes through protein: Protein interaction predictions and transcription regulation predictions. (MOU with Russian Foundation)	246320
1000000	P-97	Proteome-wide Analysis of Serine pyrophosphorylation by inositol pyrophosphates	1000000
2783795	P-98	Role of cell - cell signaling mediated by Diffusible signaling factor (DSF) in Xanthomonas virulence	2816418
2963482	P-99	Role of inositol Pyrophosphates in eukaryotic cell growth, proliferation and ribosomae biogenesis	2963482
289524651			299021303

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015		
Annexure: A Forming part of Receipts and Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	I-Remittances	
4872379.00	TDS	5410533.00
6930770.00	Income Tax	7678934.00
4751.00	Works Tax	13910.00
1501203.00	LIC	1732202.00
450115.00	GSLI	275017.00
2201735.00	Public Provident Fund	2686575.00
568281.00	Professional Tax	573726.00
2739240.00	Service Tax	3453615.00
1142963.00	Others (I-Remittances)	998280.00
200125.00	Health Insurance	411095.00
0.00	CCS	185300.00
0.00	PPF EMPLOYER SHARE	34566.00
20611562.00		23453753.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015
Annexure: B Forming part of Receipts and Payment a/c

Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
432548.00	Advance refunds/recovery/Adjst.	
34547.00	Advance for purchases by Staff	478737.00
0.00	CDFD Staff reserve Fund	255558.00
25209032.00	Chemicals [Advance]	0.00
83449.00	Computer Advance [Research Fellows]	54643035.00
35900.00	Computer Advance [Staff]	70453.00
33400.00	Consumables, glassware and Spares [Advance]	85330.00
47140.00	Conveyance Advance	3123522.00
42000.00	DG Set Maintenance [Advance]	80600.00
339200.00	EMD	0.00
13093454.00	Equipment [Advance]	168000.00
103105.00	Festival Advance	76669827.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015		
Annexure: B Forming part of Receipts and Payment a/c		

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS
 FOR THE YEAR ENDED 31st MARCH 2015

Annexure: C Forming part of Receipts and Payment a/c

Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	Projects - Receipts	
3814000.00	COE1/CORE	9102000.00
750000.00	COE1/P-I	732000.00
643000.00	COE1/P-II	459000.00
1009000.00	COE1/P-III	1090000.00
0.00	COE2-II/P-1	2186000.00
0.00	COE2-II/P-A	1093000.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015			
Annexure: C Forming part of Receipts and Payment a/c			
Previous Year Amount Rs.		Particulars	Current Year Amount Rs.
0.00	COE2-II/P-B		500000.00
0.00	COE2-II/P-C		1093000.00
0.00	COE2-II/P-D		500000.00
0.00	COE2-II/P-E		1093000.00
0.00	COE2-II-Core		11236000.00
450000.00	COE-I/P-IV		463000.00
6230314.00	P-101		9098800.00
457596.00	P-102		0.00
300000.00	P-103		0.00
0.00	P-104		2898000.00
0.00	P-106		227909.00
0.00	P-107		1854000.00
0.00	P-109		5056000.00
1490000.00	P-111		1635000.00
1419047.00	P-113		0.00
0.00	P-114		0.00
0.00	P-115		0.00
1328000.00	P-119		0.00
0.00	P-120		828000.00
4986110.00	P-122		1213195.00
1203108.00	P-123		2449811.00
1374000.00	P-125		0.00
1780400.00	P-126		1433700.00
6910824.00	P-127		4990612.00
0.00	P-128		807800.00
4300000.00	P-130		0.00
1768900.00	P-131		1902500.00
0.00	P-132		3046200.00
981000.00	P-133		867000.00
425000.00	P-134		235000.00
2057700.00	P-135		2371000.00
759000.00	P-136		570000.00
473256.00	P-137		2500000.00
0.00	P-138		0.00
520000.00	P-139		520000.00
394000.00	P-140		835000.00
300000.00	P-141		600000.00
211000.00	P-142		935920.00
0.00	P-143		1144199.00
0.00	P-144		424130.00
0.00	P-145		1870600.00
872000.00	P-146		809000.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015			
Annexure: C Forming part of Receipts and Payment a/c			
Previous Year Amount Rs.		Particulars	Current Year Amount Rs.
500000.00	P-147		0.00
0.00	P-148		0.00
1059500.00	P-149		0.00
0.00	P-150		153846.00
0.00	P-151		0.00
2872300.00	P-152		2562571.00
937000.00	P-153		621000.00
1030000.00	P-154		943000.00
0.00	P-155		0.00
2104400.00	P-156		1076500.00
2760800.00	P-157		1317000.00
1933141.00	P-158		0.00
300000.00	P-159		0.00
382000.00	P-160		531649.00
350000.00	P-161		0.00
799600.00	P-162		0.00
2006048.00	P-163		0.00
0.00	P-164		188000.00
1569682.00	P-165		0.00
0.00	P-166		4383200.00
0.00	P-167		1700000.00
0.00	P-168		1400000.00
0.00	P-169		1890000.00
0.00	P-170		820000.00
0.00	P-171		2415730.00
0.00	P-172		2100000.00
0.00	P-173		699782.00
0.00	P-174		500000.00
0.00	P-176		200103.00
0.00	P-40		0.00
496299.00	P-49A		237292.00
1062000.00	P-65A		1211236.00
1360000.00	P-81A		1360000.00
0.00	P-83A		0.00
0.00	P-88		0.00
4000000.00	P-92		0.00
645000.00	P-93/A1		0.00
985000.00	P-93/A2		0.00
0.00	P-93B2 (II)		1110000.00
0.00	P-99		0.00
74360025.00			108091285.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015		
Annexure: D Forming part of Receipts and Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	Advances	
340050.00	Advance for purchases by Staff	538638.00
0.00	AMC for Equipment [Advance]	251855.00
6938893.00	Chemicals [Advance]	4139900.00
32400.00	Computer Advance [Research Fellows]	168592.00
90000.00	Computer Advance [Staff]	270000.00
10610261.00	Consumables, glassware and Spares [Advance]	9467022.00
180768.00	Conveyance Advance	30000.00
0.00	DG Set Maintenance [Advance]	42000.00
880000.00	EMD	147200.00
23577545.00	Equipment [Advance]	28608232.00
600700.00	GDA [Others]	0.00
124875.00	Festival Advance	161250.00
10000.00	General Deposits And Advances	0.00
10000.00	Honorarium [Advance]	8000.00
0.00	Human Resource Develpment - Training of Staff Conferences [Advance]	199000.00
0.00	Inter Bank Transfer	120836854.00
127000.00	Lab Security Deposit \& Hostel Security Deposit	101594.00
31000.00	Liveries \& Blankets [Advance]	99351.00
1417120.00	LTC [Advance]	1519510.00
0.00	Medical [Advance]	238481.00
9166.00	Other Research Expenses [Advance]	0.00
1023456.00	Others [Advances]	6230.00
0.00	Others [Maintenance Advance]	1000.00
0.00	Postage-Courier [Advance]	1264.00
370500.00	Revolving Advance	392500.00
598.00	Royalty \& Consultancy	600000.00
0.00	Scientific Workshops - Symposiums - Seminars [Advance]	25000.00
0.00	Security Deposit	142500.00
614715.00	TA Abroad [Advance]	743761.00
3847364.00	TA With in India [Advance]	1731760.00
13500.00	Trainee Security Deposit	11000.00
4218212.00	Workshop \& Conference	1981331.00
55068123.00		172463825.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015 Annexure: E Forming part of Receipts and Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	I-Remittances	
0.00	CCS	185300.00
231143.00	GSLI	507594.00
334610.00	Health Insurance	558782.00
6910170.00	Income Tax	7639801.00
1501203.00	LIC	1732202.00
1052853.00	Others (I-Remittances)	970820.00
0.00	PPF EMPLOYER SHARE	0.00
570541.00	Professional Tax	570911.00
1999815.00	Public Provident Fund	2678290.00
2640829.00	Service Tax	3128141.00
4746743.00	TDS	5214401.00
0.00	Works Tax	0.00
19987907.00		23186242.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015		
Annexure: F Forming part of Receipts and Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	Projects - Expenditure	
8440715.00	COE1/CORE	8700539.00
687200.00	COE1/P-I	637866.00
409739.00	COE1/P-II	491226.00
964758.00	COE1/P-III	1059200.00
8433772.00	COE2/CORE	4606321.00
0.00	COE2/P-1	0.00
552410.00	COE2/P-2	343200.00
612089.00	COE2/P-A	269100.00
612089.00	COE2/P-B	269100.00
553032.00	COE2/P-C	0.00
0.00	COE2-II/P-1	114735.00
0.00	COE2-II/P-A	289700.00
0.00	COE2-IIIP-B	200000.00
0.00	COE2-II/P-C	289700.00
0.00	COE2-II/P-E	16774.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015			
Annexure: F Forming part of Receipts and Payment a/c			
Previous Year Amount Rs.		Particulars	Current Year Amount Rs.
0.00	COE2-II-Core		1712677.00
387200.00	COE-I/P-IV		330839.00
0.00	P-100		0.00
6866703.00	P-101		5966877.00
55498.00	P-102		0.00
0.00	P-103		0.00
1289348.00	P-104		751285.00
17739.00	P-105		0.00
38698.00	P-106		0.00
-14965.00	P-107		832709.00
61678.00	P-108		0.00
36736.00	P-109		1762354.00
0.00	P-110		0.00
1590000.00	P-111		915739.00
382293.00	P-113		0.00
0.00	P-114		0.00
-5.00	P-115		0.00
0.00	P-116		0.00
198263.00	P-119		0.00
874505.00	P-120		122761.00
0.00	P-121		0.00
13698667.00	P-122		5201628.00
1841767.00	P-123		1560986.00
0.00	P-124		198495.00
720400.00	P-125		172619.00
1059582.00	P-126		1026566.00
10789369.00	P-127		5569121.00
1146713.00	P-128		275966.00
0.00	P-129		0.00
0.00	P-13		2790.00
1900442.00	P-130		5415581.00
2245570.00	P-131		258529.00
937991.00	P-132		1519732.00
1415875.00	P-133		941497.00
440000.00	P-134		155624.00
7732589.00	P-135		2429945.00
823362.00	P-136		875952.00
1114135.00	P-137		1784667.00
1542023.00	P-138		715159.00
1723583.00	P-139		520000.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015		
Annexure: F Forming part of Receipts and Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
804000.00	P-140	1384427.00
525000.00	P-141	501463.00
973026.00	P-142	814638.00
897587.00	P-143	927400.00
0.00	P-144	0.00
3272988.00	P-145	1918061.00
920770.00	P-146	1138581.00
774331.00	P-147	719150.00
20326.00	P-148	0.00
2558921.00	P-149	1287200.00
192802.00	P-150	125750.00
1398219.00	P-151	1196347.00
1758155.00	P-152	3647616.00
323438.00	P-153	3593010.00
942568.00	P-154	999600.00
1177768.00	P-156	2178297.00
1816135.00	P-157	2057293.00
1311354.00	P-158	2001445.00
0.00	P-159	300000.00
18116.00	P-160	687200.00
0.00	P-161	265344.00
563929.00	P-162	552135.00
0.00	P-163	953577.00
26671.00	P-164	186000.00
0.00	P-165	1239547.00
0.00	P-166	2217562.00
0.00	P-167	1066220.00
0.00	P-168	611377.00
0.00	P-169	131892.00
0.00	P-170	542551.00
0.00	P-171	661283.00
0.00	P-172	638253.00
0.00	P-173	114900.00
0.00	P-175	509714.00
0.00	P-49A	0.00
179652.00	P-65A	0.00
0.00	P-71	0.00
1459167.00	P-81A	1760833.00
1300.00	P-82	0.00
0.00	P-88	218818.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015		
Annexure: F Forming part of Receipts and Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
640922.00	P-92	0.00
589291.00	P-93/A1	6088.00
1007836.00	P-93/A2	555228.00
129682.00	P-97	0.00
-52425.00	P-98	32623.00
251736.00	P-99	0.00
$\mathbf{1 0 6 6 6 4 8 2 8 . 0 0}$		$\mathbf{9 6 0 4 8 9 8 2 . 0 0}$

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS
FOR THE YEAR ENDED 31st MARCH 2015
Annexure: G Forming part of Receipts and Payment a/c

Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	CDFD C.P.F ACCOUNT	37788349.37
35805402.00	Opening Balance	
	Add:	5433264.00
4801908.00	Employee subscription/ refunds	0.00
0.00	Transfer from other departments	0.00
0.00	Institute contribution (inc. Projects staff)	208230.00
980582.00	Interest received	2791310.00
3799542.00	Less Advances/withdrawals/Transfer/Adjst	$\mathbf{4 0 6 3 8 5 3 3 . 3 7}$
$\mathbf{3 7 7 8 8 3 5 0 . 0 0}$		

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS

 FOR THE YEAR ENDED 31st MARCH 2015Annexure: H Forming part of Receipts and Payment a/c

Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	LOANS AND ADVANCES	
146340.50	Advance for purchases by Staff	206241.50
4310.00	Advances [Previous Years]	4310.00
3703.00	AMC for Equipment [Advance]	0.00
61056531.00	Chemicals [Advance]	10553396.00
16860.00	Computer Advance [Research Fellows]	114999.00
142600.00	Computer Advance [Staff]	327270.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015			
Annexure: H Forming part of Receipts and Payment a/c			

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS FOR THE YEAR ENDED 31st MARCH 2015		
Annexure: I Forming part of Receipts and Payment a/c		
Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	DEPOSITS	
22381635.00	General Deposits And Advances	16465765.00
735977.00	GDA[Others]	735977.00
23117612.00		17201742.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS
 FOR THE YEAR ENDED 31st MARCH 2015

Annexure: J Forming part of Receipts and Payment a/c

Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	INVESTMENT A/C	
8098273.00	Investments	35098273.00
11300000.00	Other Investments	0.00
19398273.00		35098273.00

CENTER FOR DNA FINGERPRINTING AND DIAGNOSTICS
FOR THE YEAR ENDED 31st MARCH 2015
Annexure: K Forming part of Receipts and Payment a/c

Previous Year Amount Rs.	Particulars	Current Year Amount Rs.
	CDFD C.P.F INVESTMENT A/C	
25159583.00	Deposit with Banks	33131298.00
4830500.00	Employee subscription	5466128.00
6858785.00	Less Transfer To Bank A/C	5004050.00
$\mathbf{2 3 1 3 1 2 9 8 . 0 0}$		$\mathbf{3 3 5 9 3 3 7 6 . 0 0}$

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-03: "Transgenesis and Genetic basis of Pathogen Resistance in the Silkworm, Bombyx Mori P.I: Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	630047.00	Opening Balance	630047.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.0		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	630047.00		630047.00
630047.00	Excess of Expenditure over Income	630047.00	0.00	Closing Balance	0.00
630047.00		630047.00	630047.00	630047.00	630047.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
P-10: "Role of upstream sequence elements in Hyper activation of transcription from Baculovirus polyhedrin gene promoter"
Receipts and Payments Account from 01/04/2014 to 31/03/2015

Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	28332.00	Opening Balance	28332.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	28332.00		28332.00
28332.00	Excess of Expenditure over Income	28332.00	0.00	Closing Balance	0.00
28332.00		28332.00	28332.00		28332.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-13: "Programme to delineate gene functions in the post - genomics era by a systematic two gene knockout method" P.I: Dr J Gowrishankar Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount
6737.00	Opening Balance	6737.00		Opening Balance	
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
6737.00		6737.00	0.00		0.00
0.00	Excess of Expenditure over Income	0.00	6737.00	Closing Balance	6737.00
6737.00		6737.00	6737.00		6737.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-25: "Functional studies of Human Immuno - deficiency Virus Type- 2 (HIV-2) Viral protien X (VPX)" P.I: Dr Mahalingam \& Dr Mande Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	529111.00	Opening Balance	529111.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	529111.00		529111.00
529111.00	Excess of Expenditure over Income	529111.00	0.00	Closing Balance	0.00
529111.00		529111.00	529111.00		529111.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-26: Occurrence of Mutations in Non dividing cells of Escherichia Coli" P.I: Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	79533.00	Opening Balance	79533.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	79533.00		79533.00
79533.00	Excess of Expenditure over Income	79533.00	0.00	Closing Balance	0.00
79533.00		79533.00	79533.00		79533.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD

Receipts and Payments Account from 01/04/2014 to 31/03/2015

Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	2237285.00	Opening Balance	2237285.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	2237285.00		2237285.00
2237285.00	Excess of Expenditure over Income	2237285.00	0.00	Closing Balance	0.00
2237285.00		2237285.00	2237285.00		2237285.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-43: "A generalized mechanism of transcription termination in prokaryotes: a quest for mechanism based transcription inhibitors for microbial pathogens". P.I: Dr Ranjan Sen Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
685906.70	Opening Balance	685906.70			
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
685906.70		685906.70	0.00		0.00
0.00	Excess of Expenditure over Income	0.00	685906.70	Closing Balance	685906.70
685906.70		685906.70	685906.70		685906.70

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-55: "Identification of DNA Markers for baculovirus resistance in silkworm, Bombyx mori" P.I: Dr J Nagaraju Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	$\begin{gathered} \text { Current Year } \\ \text { Amount } \quad \text { Rs. } \end{gathered}$	Previous Year. Amount Rs	Payments	Current Year Amount Rs
224.00	Opening Balance	224.00			
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
224.00		224.00	0.00		0.00
0.00	Excess of Expenditure over Income	0.00	224.00	Closing Balance	224.00
224.00		224.00	224.00		224.00
CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-56: "Genetics of transcription-replication interplay and of stress adaptation in bacteria" P.I: Dr Gowrishankar \& Dr K Anupama Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	1231164.00	Opening Balance	1231164.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	1231164.00		1231164.00
1231164.00	Excess of Expenditure over Income	1231164.00	0.00	Closing Balance	0.00
1231164.00		1231164.00	1231164.00		1231164.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-59: "An integrated Approach towards understanding the biology of Mycobacterium tuberculosis: Genetic, biochemical, immunological and structur analyses." P.I: Dr Hasnain, Dr Gowrishankar, Dr Mande, Dr Ranjan Sen Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	2215024.00	Opening Balance	2215024.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	2215024.00		2215024.00
2215024.00	Excess of Expenditure over Income	2215024.00	0.00	Closing Balance	0.00
2215024.00		2215024.00	2215024.00		2215024.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-60: "National Database of Prevalent Genetic Disorders in India: Development, Curation and Services" P.I: Dr H A Nagarajaram Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year	Previous Year. Amount Rs	Payments	Current Year Amount Rs
482124.00	Opening Balance	482124.00			
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
482124.00		482124.00	0.00		0.00
0.00	Excess of Expenditure over Income	0.00	482124.00	Closing Balance	482124.00
482124.00		482124.00	482124.00		482124.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-61: "Dissection of a novel phenotype of lethal accumulation of potassium in Escherichia coli mutants defective in thioredoxin/thioredoxin reduct nucleoied protein H-NS" P.I: Dr Abhijit A Sardesai Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year	Receipts	Current Year	Previous Year.	Payments	Current Year
Amount Rs		Amount Rs.	Amount Rs		Amount Rs
0.00	Opening Balance	0.00	280000.00	Opening Balance	280000.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	280000.00		280000.00
280000.00	Excess of Expenditure over Income	280000.00	0.00	Closing Balance	0.00
280000.00		280000.00	280000.00		280000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-62: "HIV - 1 Pathogenesis: Role of Integrase in Reverse Transciption and Nuclear Transport of Viral Genome" P.I: Dr S Mahalingam Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount \quad Rs
0.00	Opening Balance	0.00	278928.00	Opening Balance	278928.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	278928.00		278928.00
278928.00	Excess of Expenditure over Income	278928.00	0.00	Closing Balance	0.00
278928.00		278928.00	278928.00		278928.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-68: Identification of High risk individual with pre-cancerous states of esophageal cancer. P.I: Dr Gayatri Ramakrishna Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	59874.00	Opening Balance	59874.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	59874.00		59874.00
59874.00	Excess of Expenditure over Income	59874.00	0.00	Closing Balance	0.00
59874.00		59874.00	59874.00		59874.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-70: Identification of disease causing mutations in familial hypertrophic cardiomyopathy (FHC) patients from Andhra Pradesh P.I: Dr M D Bashyam Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	21336.00	Opening Balance	21336.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	21336.00		21336.00
21336.00	Excess of Expenditure over Income	21336.00	0.00	Closing Balance	0.00
21336.00		21336.00	21336.00		21336.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-72: Nuances of non coding DNA near insulin-responsive genes.
Receipts and Payments Account from 01/04/2014 to 31/03/2015

Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	1421653.00	Opening Balance	1421653.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	1421653.00		1421653.00
1421653.00	Excess of Expenditure over Income	1421653.00	0.00	Closing Balance	0.00
1421653.00		1421653.00	1421653.00		1421653.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-73: Identification and characterization of pancreatic cancer genes located within novel localized cpy number alterations P.I: Dr M D Bashyam Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	857136.00	Opening Balance	857136.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	857136.00		857136.00
857136.00	Excess of Expenditure over Income	857136.00	0.00	Closing Balance	0.00
857136.00		857136.00	857136.00		857136.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-79: Understanding the role of AGE proteins in inducing inflammatory responses and its regulation P.I: Dr S K Manna Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	105086.00	Opening Balance	105086.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	105086.00		105086.00
105086.00	Excess of Expenditure Over Income	105086.00	0.00	Closing Balance	0.00
105086.00		105086.00	105086.00		105086.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-80: Referral centre for detection of genetically modified foods employing DNA-based markets P.I: Dr Madhusudan Reddy Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	608222.00	Opening Balance	608222.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
			0.00	Consumables	0.00
			0.00	Contingencies	0.00
			0.00	Travel	0.00
			0.00	Overheads	0.00
			0.00	Equipment	0.00
			0.00	Books	0.00
			0.00	AMC	0.00
			0.00	Others	0.00
			608222.00	Transfer of Funds	0.00
0.00		0.00	608222.00		608222.00
608222.00	Excess of Expenditure over Income	608222.00	0.00	Closing Balance	0.00
608222.00		608222.00	608222.00		608222.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-82: Functional genomic analysis of Candida Glabrata-macrophage P.I: Dr Rupinder Kaur Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	367721.00	Opening Balance	369021.00
0.00	Grant In Aid	0.00	1300.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	369021.00		369021.00
369021.00	Excess of Expenditure Over Income	369021.00	0.00	Closing Balance	0.00
369021.00		369021.00	369021.00		369021.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-83: Prokaryotic Transcription termination factor, Rho: Mechanism of Action and Biology P.I: Dr Ranjan Sen Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	1155594.00	Opening Balance	1155594.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	1155594.00		1155594.00
1155594.00	Excess of Expenditure over Income	1155594.00	0.00	Closing Balance	0.00
1155594.00		1155594.00	1155594.00		1155594.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
P-84: Preparing for vaccine efficacy trials: Baseline epidemiology, improved diagnosis, markers of protection and phase I/II trials
Receipts and Payments Account from 01/04/2014 to 31/03/2015

Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	1150.00	Opening Balance	1150.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	1150.00		1150.00
1150.00	Excess of Expenditure over Income	1150.00	0.00	Closing Balance	0.00
1150.00		1150.00	1150.00		1150.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-84A: Human epigenetic to the rescue of human identification process: Enriching human DNA from DNA mixture employing antibodies directed ag 5-methylcytosine followed by whole genome amplification P.I: Dr Madhusudan Reddy Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	106479.00	Opening Balance	106479.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	106479.00		106479.00
106479.00	Excess of Expenditure over Income	106479.00	0.00	Closing Balance	0.00
106479.00		106479.00	106479.00		106479.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-97: Proteome-wide Analysis of Serine pyrophosphorylation by inositol pyrophosphates P.I: Dr Rashna Bhandari Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	$\begin{aligned} & \text { Current Year } \\ & \text { Amount } \quad \text { Rs. } \end{aligned}$	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	146870.00	Opening Balance	276552.00
0.00	Grant In Aid	0.00	96284.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	33398.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	276552.00		276552.00
276552.00	Excess of Expenditure Over Income	276552.00	0.00	Closing Balance	0.00
276552.00		276552.00	276552.00		276552.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-102: "Understanding the role of Mycobacterium tuberculosis heat shockprotein 60 as Th1/Th2 immuno modular" P.I: Dr Sangita Mukhopadhyay Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	430020.00	Opening Balance	27922.00
457596.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	19043.00	Travel	0.00
0.00		0.00	19026.00	Overheads	0.00
0.00		0.00	17429.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
457596.00		0.00	485518.00		27922.00
27922.00	Excess of Expenditure Over Income	27922.00	0.00	Closing Balance	0.00
485518.00		27922.00	485518.00		27922.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-103: National Bioscience Award - Regulation of mast cell signaling, apoptosis and surface receptors P.I: Dr Sunil Kumar Manna Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year
0.00	Opening Balance	0.00	600000.00	Opening Balance	300000.00
300000.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
300000.00		0.00	600000.00		300000.00
300000.00	Excess of Expenditure Over Income	300000.00	0.00	Closing Balance	0.00
600000.00		300000.00	600000.00		300000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-104: Virtual Centre of Excellence on Epigenetics
Receipts and Payments Account from 01/04/2014 to 31/03/2015

Previous Year	Receipts	Current Year	Previous Year.	Payments	Current Year
Amount Rs		Amount Rs.	Amount Rs		Amount Rs
0.00	Opening Balance	0.00	2017875.00	Opening Balance	3307223.00
0.00	Grant In Aid	2898000.00	354407.00	Salaries - Manpower	403779.00
0.00		0.00	884941.00	Consumables	220853.00
0.00		0.00	50000.00	Contingencies	100000.00
0.00		0.00	0.00	Travel	26653.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00 0.00		0.00 0.00	0.00 0.00	Others Transfer of Funds	0.00
0.00		2898000.00	3307223.00		4058508.00
3307223.00	Excess of Expenditure Over Income	1160508.00	0.00	Closing Balance	0.00
3307223.00		4058508.00	3307223.00		4058508.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-119: Analysis of DNA copy number alterations in esophaeal cancer P.I: Dr M D Bashyam Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	1132629.00	Opening Balance	2892.00
1328000.00	Grant In Aid	0.00	198263.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
1328000.00		0.00	1330892.00		2892.00
2892.00	Excess of Expenditure Over Income	2892.00	0.00	Closing Balance	0.00
1330892.00		2892.00	1330892.00		2892.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-122: Understanding the role of Hox genes in anterior-posterior axis determination of the central nervous system P.I: Dr Rohit Joshi Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
13089682.00	Opening Balance	4377125.00		Opening Balance	0.00
4986110.00	Grant In Aid	1213195.00	1207355.00	Salaries - Manpower	939806.00
0.00		0.00	1839406.00	Consumables	2798321.00
0.00		0.00	0.00	Contingencies	30454.00
0.00		0.00	22013.00	Travel	24747.00
0.00		0.00	1199850.00	Overheads	472875.00
0.00		0.00	9430043.00	Equipment	935425.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
18075792.00		5590320.00	13698667.00		5201628.00
0.00	Excess of Expenditure Over Income	0.00	4377125.00	Closing Balance	388692.00
18075792.00		5590320.00	18075792.00		5590320.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-123: Establish a Max Planck Partner Group for Genetic Diversity Studies at CDFD P.I: Dr N Madhusudan Reddy Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount \quad Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
1151969.00	Opening Balance	513310.00		Opening Balance	0.00
1203108.00	Grant In Aid	2449811.00	438409.00	Salaries - Manpower	339509.00
0.00		0.00	1016274.00	Consumables	480492.00
0.00		0.00	100000.00	Contingencies	100000.00
0.00		0.00	199743.00	Travel	159294.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	87341.00	Equipment	481691.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
2355077.00		2963121.00	1841767.00		1560986.00
0.00	Excess of Expenditure Over Income	0.00	513310.00	Closing Balance	1402135.00
2355077.00		2963121.00	2355077.00		2963121.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P -124: Preparation and characterization of peroxometal compounds and studies and their biological significance in cellular signalling P.I: Dr Gayatri Ramakrishna Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	549916.00	Opening Balance	549916.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	109200.00
0.00		0.00	0.00	Consumables	89295.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	549916.00		748411.00
549916.00	Excess of Expenditure Over Income	748411.00	0.00	Closing Balance	0.00
549916.00		748411.00	549916.00		748411.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-125: Mechanistic studies on the role of protein kinase Snfilk in cell cycle and cancer P.I: Dr M Subba Reddy Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	172619.00	480981.00	Opening Balance	0.00
1374000.00	Grant In Aid	0.00	220400.00	Salaries - Manpower	-10800.00
0.00		0.00	500000.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
000		0.00	0.00	Transfer of Funds	183419.00
1374000.00		172619.00	1201381.00		172619.00
0.00	Excess of Expenditure Over Income	0.00	172619.00	Closing Balance	0.00
1374000.00		172619.00	1374000.00		172619.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-131: Structural and functional studies of Acyl CoA Binding proteins from plasmodium falciparum P.I: Dr Akash Ranjan Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	768669.00	Opening Balance	1245339.00
1768900.00	Grant In Aid	1902500.00	311665.00	Salaries - Manpower	212529.00
0.00		0.00	1861029.00	Consumables	0.00
0.00		0.00	50000.00	Contingencies	46000.00
0.00		0.00	22876.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
1768900.00		1902500.00	3014239.00		1503868.00
1245339.00	Excess of Expenditure Over Income	0.00	0.00	Closing Balance	398632.00
3014239.00		1902500.00	3014239.00		1902500.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-132: Characterization of tumor suppressor function of ARIDIB, a component of the human SWI/SNF chromatin remodelling complex P.I: Dr M D Bashyam, Dr Rohit Joshi Receipts and Payments Account from 01/04/2014 to 31/03/2015					
$\begin{array}{lr}\text { Previous } \mathrm{Year} \\ \text { Amount } & \text { Rs }\end{array}$	Receipts	Current Year Amount \quad Rs.	Previous Year. Amount	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	1228480.00	Opening Balance	2166471.00
0.00	Grant In Aid	3046200.00	400113.00	Salaries - Manpower	429347.00
0.00		0.00	484566.00	Consumables	1068571.00
0.00		0.00	20000.00	Contingencies	0.00
0.00		0.00	33312.00	Travel	21814.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		3046200.00	2166471.00		3686203.00
2166471.00	Excess of Expenditure Over Income	640003.00	0.00	Closing Balance	0.00
2166471.00		3686203.00	2166471.00		3686203.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-135: Sys TB: A Network Program for Resolving the Intracellular Dynamics of Host Phthogen Interaction in TB Infection P.I: Dr. Sanjeev Kholsa Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
5376566.00	Opening Balance	0.00		Opening Balance	298323.00
2057700.00	Grant In Aid	2371000.00	274929.00	Salaries - Manpower	343200.00
0.00		0.00	1885265.00	Consumables	2000000.00
0.00		0.00	50000.00	Contingencies	50000.00
0.00		0.00	22395.00	Travel	36745.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	5500000.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
7434266.00		2371000.00	7732589.00		2728268.00
298323.00	Excess of Expenditure Over Income	357268.00	0.00	Closing Balance	0.00
7732589.00		2728268.00	7732589.00		2728268.00
CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-136: Raf Kinase - a key target for modem-day theraphy against tumors P.I: Dr Sunil Kumar Manna Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
77980.00	Opening Balance	13618.00		Opening Balance	0.00
759000.00	Grant In Aid	570000.00	187200.00	Salaries - Manpower	187200.00
0.00		0.00	606162.00	Consumables	626858.00
0.00		0.00	0.00	Contingencies	30000.00
0.00		0.00	0.00	Travel	31894.00
0.00		0.00	30000.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
00		0.00	0.00	Transfer of Funds	0.00
836980.00		583618.00	823362.00		875952.00
0.00	Excess of Expenditure Over Income	292334.00	13618.00	Closing Balance	0.00
836980.00		875952.00	836980.00		875952.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-137: Signaling pathways involved in down regulation of proinflammatory responses by PPE18 protein of Mycobacterium tuberculosis: Implicatio PPE18 as therapeutics P.I: Dr Sangita Mukhopadhyay Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
685020.00	Opening Balance	44141.00		Opening Balance	0.00
473256.00	Grant In Aid	2500000.00	79733.00	Salaries - Manpower	224180.00
0.00		0.00	750000.00	Consumables	696860.00
0.00		0.00	53423.00	Contingencies	34577.00
0.00		0.00	0.00	Travel	44797.00
0.00		0.00	100000.00	Overheads	100000.00
0.00		0.00	130979.00	Equipment	684253.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
1158276.00		2544141.00	1114135.00		1784667.00
0.00	Excess of Expenditure Over Income	0.00	44141.00	Closing Balance	759474.00
1158276.00		2544141.00	1158276.00		2544141.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-138: Co-evaluation of Dnmt3I and Genomic imprinting P.I: Dr Sanjeev Khosla Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
903944.00	Opening Balance	0.00		Opening Balance	638079.00
0.00	Grant In Aid	0.00	151505.00	Salaries - Manpower	186160.00
0.00		0.00	800000.00	Consumables	500000.00
0.00		0.00	25000.00	Contingencies	25000.00
0.00		0.00	0.00	Travel	3999.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	565518.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
903944.00		0.00	1542023.00		1353238.00
638079.00	Excess of Expenditure Over Income	1353238.00	0.00	Closing Balance	0.00
1542023.00		1353238.00	1542023.00		1353238.00

P-147: The Effect of Parental Education, Ethics of Research Participation and Array Comparative Genomic Hybridization in Subjects with Mental Retard (MR) and /or Autism P.I: Dr Ashwin B Dalal Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
315642.00	Opening Balance	41311.00		Opening Balance	0.00
500000.00	Grant In Aid	0.00	187200.00	Salaries - Manpower	187200.00
0.00		0.00	400000.00	Consumables	400000.00
0.00		0.00	50000.00	Contingencies	50000.00
0.00		0.00	50831.00	Travel	31950.00
0.00		0.00	86300.00	Overheads	50000.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
815642.00		41311.00	774331.00		719150.00
0.00	Excess of Expenditure Over Income	677839.00	41311.00	Closing Balance	0.00
815642.00		719150.00	815642.00		719150.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-149: Role of SUMOylation in the pathobiology of Candida Glabrata P.I: Dr Rupinder Kaur Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
1770286.00	Opening Balance	270865.00		Opening Balance	0.00
1059500.00	Grant In Aid	0.00	187200.00	Salaries - Manpower	187200.00
0.00		0.00	1700000.00	Consumables	900000.00
0.00		0.00	150000.00	Contingencies	200000.00
0.00		0.00	53001.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	468720.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
2829786.00		270865.00	2558921.00		1287200.00
0.00	Excess of Expenditure Over Income	1016335.00	270865.00	Closing Balance	0.00
2829786.00		1287200.00	2829786.00		1287200.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
P.I: Dr K P Arun Kumar
Receipts and Payments Account from 01/0

Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	1114145.00		Opening Balance	0.00
2872300.00	Grant In Aid	2562571.00	284155.00	Salaries - Manpower	343200.00
0.00		0.00	1474000.00	Consumables	3026000.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	278416.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
2872300.00		3676716.00	1758155.00		3647616.00
0.00	Excess of Expenditure Over Income	0.00	1114145.00	Closing Balance	29100.00
2872300.00		3676716.00	2872300.00		3676716.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-153: An attractive and promising stragegy for early cancer diagnosis through the assembly of the human cancer volatome" P.I: Dr H A Nagarajaram Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
3000000.00	Opening Balance	3613562.00		Opening Balance	0.00
937000.00	Grant In Aid	621000.00	58877.00	Salaries - Manpower	374400.00
0.00		0.00	70000.00	Consumables	70000.00
0.00		0.00	80000.00	Contingencies	80000.00
0.00		0.00	114561.00	Travel	68610.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	3000000.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
3937000.00		4234562.00	323438.00		3593010.00
0.00	Excess of Expenditure Over Income	0.00	3613562.00	Closing Balance	641552.00
3937000.00		4234562.00	3937000.00		4234562.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-156 : Targeting microbial quorum sensing to demonstrate potential application of cell-cell signaling molecules from Xanthomonas group of plant pathogen in diesease control PI : Dr Subhadeep Chatterjee Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	926632.00		Opening Balance	0.00
2104400.00	Grant In Aid	1076500.00	197768.00	Salaries - Manpower	363601.00
0.00		0.00	950000.00	Consumables	1600000.00
0.00		0.00	30000.00	Contingencies	50000.00
0.00		0.00	0.00	Travel	32201.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	132495.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00 0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
2104400.00		2003132.00	1177768.00		2178297.00
0.00	Excess of Expenditure Over Income	175165.00	926632.00	Closing Balance	0.00
2104400.00		2178297.00	2104400.00		2178297.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-157 : Identification of novel antifungal drug and delineation of drug resistance mechanisms in an opportunistic human fungal pathogen Candida glabrata PI : Dr Rupinder Kaur Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	944665.00		Opening Balance	0.00
2760800.00	Grant In Aid	1317000.00	165309.00	Salaries - Manpower	195880.00
0.00		0.00	1200000.00	Consumables	1200000.00
0.00		0.00	50000.00	Contingencies	50000.00
0.00		0.00	19974.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	380852.00	Equipment	611413.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
2760800.00		2261665.00	1816135.00		2057293.00
0.00	Excess of Expenditure Over Income	0.00	944665.00	Closing Balance	204372.00
2760800.00		2261665.00	2760800.00		2261665.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-158 : Modulation of host immune responses by a PPE Protein of Mycobacterium tuberculosis: Understand pathogen cross-talk PI : Dr Sangita Mukhopadhyay Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount \qquad	Receipts	Current Year Amount \qquad	Previous Year. Amount \qquad	Payments	Current Year Amount Rs
0.00	Opening Balance	621787.00		Opening Balance	0.00
1933141.00	Grant In Aid	0.00	233567.00	Salaries - Manpower	342277.00
0.00		0.00	1000000.00	Consumables	1300000.00
0.00		0.00	70000.00	Contingencies	50000.00
0.00		0.00	7787.00	Travel	9227.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	299941.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
1933141.00		621787.00	1311354.00		2001445.00
0.00	Excess of Expenditure Over Income	1379658.00	621787.00	Closing Balance	0.00
1933141.00		2001445.00	1933141.00		2001445.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-159: Gene Targeting of microbial isolates to demonstrate potential plant growth promoting (PGP) traits by third generation sequencing PI : Dr Subhadeep Chatterjee Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	300000.00		Opening Balance	0.00
300000.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	300000.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
300000.00		300000.00	0.00		300000.00
0.00	Excess of Expenditure Over Income	0.00	300000.00	Closing Balance	0.00
300000.00		300000.00	300000.00		300000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
P-160 : Understanding the role of novel adhesins of Xanthomonas oryzae PV orzae in Virulence and colonization in Rice Receipts and Payments Account from 01/04/2014 to 31/03/2015

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD P-161 : Analysis of co-regulation between DNA replication activity and amino acid homeostatis by transcription factor IciA/ArgP in Eschericia coli PI : Dr J Gowrishankar Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	350000.00		Opening Balance	0.00
350000.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	10000.00
0.00		0.00	0.00	Travel	255344.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
350000.00		350000.00	0.00		265344.00
0.00	Excess of Expenditure Over Income	0.00	350000.00	Closing Balance	84656.00
350000.00		350000.00	350000.00		350000.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
P-174 : Is non-canonical Wnt signalling a major player in early-onset sporadic rectal cancer
PI : Dr M D Bashyam

P-175 : Multi Centri Collaborative study of the Clinical, Biochemical and Molecular Characterization of Lysosomal storage disorders in India - The in for research in Lysosomal Storage Disorders" PI : Dr Ashwin B Dalal Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00		Opening Balance	0.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	9714.00
0.00		0.00	0.00	Consumables	500000.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	0.00		509714.00
0.00	Excess of Expenditure Over Income	509714.00	0.00	Closing Balance	0.00
0.00		509714.00	0.00		509714.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD COE2/CORE : DBT Centre of Excellence for Microbial Biology PI : Dr J Gowrishankar, Dr K Anupama, Dr Abhijit A Sardesai, Dr R Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	10800722.00	Opening Balance	19234494.00
0.00	Grant In Aid	0.00	7816390.00	Salaries - Manpower	4606321.00
0.00		0.00	400000.00	Consumables	0.00
0.00		0.00	158925.00	Contingencies	0.00
0.00		0.00	58457.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	19234494.00		23840815.00
19234494.00	Excess of Expenditure Over Income	23840815.00	0.00	Closing Balance	0.00
19234494.00		23840815.00	19234494.00		23840815.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD COE2/P-1 : Addressing functiional properties of E. coli through genome-wide protein-protein linkage analysis PI : Dr. J Gowrishankar Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	684083.00	Opening Balance	684083.00
0.00	Grant In Aid	0.00	0.00	Salaries - Manpower	0.00
0.00		0.00	0.00	Consumables	0.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	684083.00		684083.00
684083.00	Excess of Expenditure Over Income	684083.00	0.00	Closing Balance	0.00
684083.00		684083.00	684083.00		684083.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD COE2/P-B : Molecular genetic approaches to dissect the physiology of osmoadptation in Escherichia coli PI : Dr. J. Gowrishankar, Dr. Abhijit A Sardesasi Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00	394420.00	Opening Balance	1006509.00
0.00	Grant In Aid	0.00	358800.00	Salaries - Manpower	269100.00
0.00		0.00	200000.00	Consumables	0.00
0.00		0.00	50000.00	Contingencies	0.00
0.00		0.00	3289.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		0.00	1006509.00		1275609.00
1006509.00	Excess of Expenditure Over Income	1275609.00	0.00	Closing Balance	0.00
1006509.00		1275609.00	1006509.00		1275609.00
CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD COE2/P-C : Functional role and mechanisms of the ArgO exporter and the transcriptional regulator ArgP in E. Coli PI : Dr. J Gowrishankar, Dr. Ranjan Sen Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
79678.00	Opening Balance	0.00		Opening Balance	473354.00
0.00	Grant In Aid	0.00	83032.00	Salaries - Manpower	0.00
0.00		0.00	400000.00	Consumables	0.00
0.00		0.00	70000.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
79678.00		0.00	553032.00		473354.00
473354.00	Excess of Expenditure Over Income	473354.00	0.00	Closing Balance	0.00
553032.00		473354.00	553032.00		473354.00

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD
COE2-II/P-B : Role of the ArgP transcriptional regulator and metabolism of basic amino acids Arg and Lys in E.coli

CENTRE FOR DNA FINGERPRINTING AND DIAGNOSTICS, HYDERABAD COE2-II/P-C : Investigating global RNA turnover mechanisms and their interplay with Rho-dependent transcription termination in E. coli PI : Dr K Anupaman Receipts and Payments Account from 01/04/2014 to 31/03/2015					
Previous Year Amount Rs	Receipts	Current Year Amount Rs.	Previous Year. Amount Rs	Payments	Current Year Amount Rs
0.00	Opening Balance	0.00		Opening Balance	0.00
0.00	Grant In Aid	1093000.00	0.00	Salaries - Manpower	89700.00
0.00		0.00	0.00	Consumables	200000.00
0.00		0.00	0.00	Contingencies	0.00
0.00		0.00	0.00	Travel	0.00
0.00		0.00	0.00	Overheads	0.00
0.00		0.00	0.00	Equipment	0.00
0.00		0.00	0.00	Books	0.00
0.00		0.00	0.00	AMC	0.00
0.00		0.00	0.00	Others	0.00
0.00		0.00	0.00	Transfer of Funds	0.00
0.00		1093000.00	0.00		289700.00
0.00	Excess of Expenditure Over Income	0.00	0.00	Closing Balance	803300.00
0.00		1093000.00	0.00		1093000.00

फोटो गैलरी Photo Gallery

CODIS Installation and training in CODIS Software (Hon'ble Consul General of USA Mr Michael Mullins visited CDFD)

Visit from Madhya Pradesh Council of Science \& Technology, Bhopal under $8^{\text {th }}$ Vigyan Mathan Yatra 2014-15 under M.P. Mission Excellence programme.

Flag hoisting on the occasion of Independence Day 2014.

Hindi Workshop on Unicode Software.

Celebration of Hindi Day, 2014

Glimpses of Foundation Day Celebrations, 2015

Wealth Out of Waste, created by children of CDFD staff

Rangoli and Art Competitions for staff, students and children of CDFD staff

[^0]: * Partial work done in CDFD

